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Abstract

Data movement overheads are a key performance bottleneck that limit the efficiency

of modern computer systems. Domain-specific accelerators help ameliorate some of

these bottlenecks by improving data reuse and overlapping computation with commu-

nication. Yet, the resource intensive nature of contemporary workloads like computa-

tional photography and machine learning applications continues to strain the surround-

ing memory subsystem, limiting scalability and performance.

This dissertation identifies three fundamental communication bottlenecks: inter-

accelerator data movement, accelerator/memory data movement, and limited memory

capacity. Traditional inter-accelerator communication via the main memory impedes

system scaling as memory access time dominates execution time. Concurrently, grow-

ing application working set sizes face both performance and capacity limitations at

the host memory. This dissertation tackles these three issues separately. First, a data

movement-aware accelerator scheduling policy is proposed that maximizes the utiliza-

tion of accelerator-to-accelerator communication hardware, reducing main memory and

interconnect pressure. Second, architectural innovations are presented to enhance the

viability of processing in memory architectures that eliminate such communication en-

tirely by moving compute closer to memory. Finally, a study characterizing the impli-

cations of heterogeneous host memory on accelerator performance is presented, serv-

ing as the basis for smarter data placement schemes for outsized workloads like large

language models. When combined, the contributions of this dissertation enhance the

efficiency and scalability of future accelerator-rich systems.
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1

1 Introduction

The growth and ubiquity of computing in modern life has had an undeniably positive

impact on our society, both economic [208] and social [82]. For a long time, technology

scaling ensured that the compute capability of modern systems nearly doubled every

year [191], underpinning the development of applications like large language models

(LLMs) [64, 113]. Even as technology scaling hits physical limits [151], however,

demand for computing power shows no signs of slowing down [267].

In order to keep up with increasing performance and energy efficiency demands,

modern systems have come to rely increasingly on specialized hardware accelera-

tors [266]. This trend is stimulated by the end of Dennard scaling [65], which stipulated

that shrinking transistor sizes result in a proportionate reduction in power consump-

tion, and the consequent increase in the amount of “dark silicon” [71], i.e., transistors

that need to be turned off due to insufficient power. Accelerators trade CPUs’ gen-

eral purpose processing capabilities for a leaner, application-specific architecture that

is tailored to maximize data reuse and is rid of instruction overheads like fetch and

decode [102, 220] This allows them to achieve orders of magnitude improvement in

performance while consuming a fraction of power of a traditional high-performance

CPU [2, 46, 55, 57, 150, 245, 264].

Accelerators optimize for operational intensity (i.e., operations per byte of data)
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by fusing multiple operators and maximizing data reuse. However, data movement

between accelerators and between accelerators and memory continues to be a challenge.

These problems are exacerbated by two application trends: 1) rising computational

demands that make accelerator chaining lucrative [57, 67, 90], resulting in increased

inter-accelerator communication, and 2) an explosion in application working set sizes

that stress both memory performance and capacity [169, 283]. This dissertation tackles

each of these issues via a combination of hardware and software optimizations, with

the simultaneous goals of improving system efficiency and minimizing implementation

costs of potential solutions.

1.1 Motivation

Accelerators predominantly sit outside CPUs and operate asynchronously in a loosely-

coupled fashion. This allows accelerators to be designed in isolation from CPUs and

marketed as intellectual property (IP) cores. Systems-on-chip (SoCs) designers typ-

ically assemble multiple IPs, from potentially different manufacturers, to compose

complete SoCs [242]. In order to maximize performance and accelerator-level par-

allelism [228], applications often chain accelerators in a producer/consumer fashion,

effectively pipelining the computation across multiple accelerators [196].

Traditionally, data communication between pairs of accelerators is performed via

the main memory [304]. While tenable for few accelerators and small data sizes, the

contention for on-chip network and main memory bandwidth through such communi-

cation presents a serious performance bottleneck as systems become more heteroge-

neous [57] and data sizes grow [278]. Contemporary techniques to reduce this con-

tention include ARM AXI-Stream [17, 24], which allows multiple producer/consumer

buffers to be connected over a crossbar switch, and Linux P2PDMA [172, 240], which

enables direct DMA transfers between PCIe devices. These solutions enable forward-

ing of data between accelerators, keeping data on-chip and reducing contention for
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main memory. Though data forwarding can lower memory and interconnect conges-

tion for a given application, it can negatively influence the quality-of-service (QoS) for

other competing applications by making accelerators less available.

Challenge #1: The efficient use of inter-accelerator data movement optimizations

while providing quality-of-service (QoS) to competing applications remains an open

challenge.

As data sizes grow, application performance across usage domains are becom-

ing increasingly memory bound, ranging from consumer mobile applications [33] to

large server workloads [75, 276]. This is a result of not only increasing working

set sizes and advent of data hungry applications like large language models, but also

of technological challenges in DRAM scaling [192]. In particular, processor perfor-

mance has always scaled faster than memory performance leading to the latter be-

coming the predominant performance bottleneck and giving rise to the problem of

“memory wall” [110, 287]. While newer memory technologies like HBM [131, 139],

GDDR6 [132], and HMC [100, 130] reduce the memory bottleneck by offering wider

links and increased parallelism and scalability [39], they still struggle to close the gap

between processor and memory performance. Domain-specific accelerators also ame-

liorate this problem to a certain extent by optimizing for on-chip data reuse and over-

lapping computation with communication [217], but the widening processor/memory

performance gap necessitates a more radical rethinking of how we see computing.

Processing in memory (PIM) [3, 84, 99, 108, 161, 195, 270] has emerged as a

promising solution to the problem, advocating for compute to be moved closer to data

instead of the other way around. PIM architectures place compute units close to/in-

side main memory cells, minimizing data movement costs and achieving wide data

parallelism. While PIM-enabled memories offer significant performance and energy

improvements over conventional architectures, integration of such memories into exist-

ing systems remains an open challenge. In particular, naively retrofitting PIM-enabled

memory in a conventional processor could be detrimental to its performance (Sec-
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tion 4.3). PIM applications are optimized to saturate the memory subsystem to maxi-

mize speedup. Since modern systems are often multi-programmed, such saturation can

lead to extreme unfairness and denial of service to other non-PIM applications.

Challenge #2: Incorporating PIM-enabled memories into existing memory hierar-

chies needs careful re-design and management of shared resources to maximize mem-

ory throughput and ensure fairness.

Memory density is another key constraint of contemporary DRAM technology. Ap-

plications like state-of-the-art LLMs comprise of trillions of parameters that are needed

at runtime [190], requiring terabytes of memory. In addition to the model parame-

ters, LLMs also maintain a key-value store of past queries and transient layer activa-

tions. The latter two grow dynamically as the model performs inference on incoming

queries, constituting as much as 35% of the total memory requirement for running in-

ference [154]. The rising capacity demands of such applications has far surpassed the

rate at which DRAM density has grown [87, 169]. Emerging memory technologies like

phase change memory (PCM) [221], resistive RAM (ReRAM) [45], and spin-transfer

torque RAM (STT-RAM) [19, 158, 223, 255] improve density compared to traditional

DRAM while achieving varying degrees of performance parity. PCM, in particular, has

been commercialized as Intel Optane DCPMM [50, 121], a byte-addressable persis-

tent memory module that fits into regular DDR4 slots (albeit using a custom protocol

called DDR-T [122, 307]) and provides regular load/store semantics. While seman-

tically consistent, Optane has different architectural characteristics: 3x and 4x lower

read and write bandwidth, non-linear bandwidth scaling, and internal access granu-

larity of 256 bytes [129, 218]. Besides memory technology innovations, interconnect

technologies like compute express link (CXL) [60] allow for coherent and technology-

agnostic expansion of main memory over PCI Express, creating large memory pools

that can be shared by multiple processors and devices. However, even with optimiza-

tions to the link layer, CXL adds at least 70 nanoseconds to round-trip memory access

latency [252].
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The performance characteristics of such emerging technologies have led to the de-

velopment of data layout optimizations to address both performance and capacity lim-

itations [4, 167, 186, 224, 273, 283]. Accelerators interface with host memory to not

only load initial data, but often also spill data when they run out of local memory, espe-

cially for large footprint applications like LLMs [86, 254, 292]. In such instances, data

placement across the memory hierarchy can be a key factor in data movement costs and

can affect the balance of computation time versus communication time.

Challenge #3: Effective use of emerging host memory technologies by accelerators

requires careful application-specific data placement to adequately overlap data move-

ment costs with computation.

Overcoming the three challenges discussed above are critical to the design of effi-

cient accelerator-rich systems. This dissertation attempts to address each of them via a

variety of hardware and software solutions.

1.2 Research Contributions

Thesis statement: Data movement remains a critical performance bottleneck in mod-

ern accelerator-rich systems. In particular, inter-accelerator and accelerator/memory

data movement are key impediments to application and system scalability. This thesis

demonstrates that: 1) communication-aware accelerator scheduling can reduce inter-

accelerator data movement overheads while maintaining quality of service; 2) smarter

memory access scheduling in PIM-enabled systems can enhance system-level fairness

and throughput; and 3) latency tolerance-aware data placement can effectively overlap

the cost of data movement from high capacity heterogeneous host memory with com-

putation. Put together, these solutions aim to improve the efficiency and scalability of

accelerator-rich systems.

Figure 1.1 presents an overview of this dissertation’s primary contributions, which

are elaborated below.
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Figure 1.1: Overview of the contributions of this dissertation.

• Optimizing inter-accelerator communication: Modern SoCs often incorporate

inter-accelerator communication protocols, but their utilization is left to program-

mers. This dissertation proposes RELIEF, an intelligent accelerator scheduling

policy that considers data movement tax as a first-class design goal. RELIEF

schedules accelerator requests from competing real-time applications in a way

that maximizes forwarding of data from producer accelerators to consumer accel-

erators using on-chip communication protocols without going through the main

memory. The key idea is to exploit the slack time (time margin to deadline)

of one application to prioritize requests from another application such that the

latter’s producer and consumer requests can be scheduled in consecutive order,

avoiding the need to temporarily write producer results to main memory. RE-

LIEF is an online policy that keeps a live record of each application’s slack time,

minimizing missed deadlines due to such forwarding.

• Enhancing viability of PIM: Processing in memory (PIM) effectively eliminates

data movement between compute and memory by moving compute near/inside

memory cells. This dissertation presents the observation that retrofitting PIM

into existing systems can degrade throughput and cause unfairness between PIM

and non-PIM applications, primarily caused by a saturation of resources by the
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former. Based on this observation, modifications to on-chip interconnects and a

new memory controller scheduling policy, called F3FS, are proposed to remedy

the problem. The interconnect modifications separate PIM and non-PIM requests

into different channels, eliminating interference. At the memory controller, F3FS

ensures each request type gets proportionate access to memory resources for fair-

ness, while minimizing switching between them to maximize throughput.

• Quantifying impact of emerging memory technologies: High capacity but

low performance memory architectures like Intel Optane DCPMM [50, 121] and

CXL-based memory expansion [62] can serve as an effective spill memory for

large data applications like LLMs executing on GPUs. This dissertation presents

a characterization of host/device interactions in such heterogeneous architectures

using a real Intel Optane based machine, highlighting the importance of careful

data placement and balancing of compute and communication to hide the perfor-

mance overheads of such memory. The characterization serves as the basis for

two application-aware data placement schemes, one each optimizing for latency

and throughput.

1.3 Dissertation Organization

The rest of this dissertation is organized as follows. Chapter 2 provides a background

in all three broad tenets of this dissertation: accelerator design and chaining, process-

ing in memory, and emerging memory technologies. Chapter 3 presents RELIEF, an

online accelerator scheduling policy that opportunistically forwards data between pro-

ducer and consumer accelerators while ensuring fairness between competing applica-

tions. Chapter 4 characterizes performance bottlenecks when integrating PIM-enabled

memory into existing systems. It then presents hardware optimizations at the inter-

connect and memory controller for efficient GPU/PIM co-processing under both com-

petitive and collaborative scenarios. Chapter 5 compares host/GPU communication
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performance of heterogeneous host memory to traditional DRAM memory. This char-

acterization serves as the basis for improved data placement schemes that retain the ca-

pacity benefits of heterogeneous memory while closing the performance gap to DRAM

memory. Chapter 6 concludes the dissertation with potential future work directions.
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2 Background

This chapter covers essential background to the bottlenecks described in Chapter 1

and the contributions presented in the following chapters. Section 2.1 motivates the

need for domain specific accelerators, emphasizing the key features that enable them

to outperform traditional CPUs and the different ways they can be integrated. Cru-

cially, the section summarizes key hardware and software impediments to accelerator

chaining and prior solutions that address them. Section 2.2 presents a classification

of different processing in memory (PIM) architectures and the tradeoffs that each of

them entail. This is followed by a brief discussion on the various PIM programming

paradigms. Section 2.3 looks at some emerging memory technologies that offer higher

capacity compared to traditional DRAM at the cost of performance. In particular, the

section covers background on the architecture and performance of Intel Optane and

CXL-enabled memory expansion. Section 2.4 summarizes different GPU/host commu-

nication paradigms and programming interfaces. Section 2.5 discusses the architecture

of modern large language models (LLMs), highlighting the challenging nature of LLM

inference. Finally, Section 2.6 provides an overview of recent proposals for incorporat-

ing PIM into emerging memory technologies.



10

2.1 Domain Specific Accelerators

Limited multi-core scaling in chip multi-processors (CMPs) as a result of the end of

Dennard scaling [65], which dictates that transistor power consumption scales with

transistor size, has pushed computer architectures into the era of dark silicon where in-

creasing areas of chips need to be turned off as transistor sizes reduce [71]. A large part

of a CPU’s power consumption comes from instruction overheads. Hameed et al. [102]

revealed how functional units in CMPs consume as little as 6% of the total energy when

running a video encoding application, highlighting the cost of the generality CPUs pro-

vide with instruction fetch/decode and pipelining logic constituting 34% and 22% of

the total CPU energy consumption.

In order to improve their performance per unit area, processors have come to incor-

porate specialized accelerators that fuse commonly used operations into their pipeline,

improving data reuse and amortizing instruction fetch/decode costs. While the idea

of domain-specific functional units dates back to late 1990s with Intel MMX [141],

contemporary in-core accelerators are significantly more complex and narrow in their

scope, like Intel Advanced Matrix Extensions [126]. Mobile SoCs are, in fact, no

stranger to domain specific acceleration given their limited power and thermal bud-

gets [227, 229].

Accelerators can have varying degrees of coupling with CPUs [58], ranging from

tightly-coupled accelerators (TCAs, Figure 2.1a) that behave and appear as a functional

unit [55, 92, 123, 126, 220], to loosely-coupled accelerators (LCAs, Figure 2.1b) that

sit outside the CPU core and appear as programmable I/O devices to the operating

system (OS) [2, 34, 46, 57, 76, 150, 245]. TCAs share the CPU’s memory hierarchy

and are programmed using instruction set architecture (ISA) extensions. This allows

for easier programming of the accelerator and efficient data sharing, at the expense of

complex CPU and ISA verification.

LCAs, on the other hand, are programmed using memory-mapped registers
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Figure 2.1: Different types of accelerator coupling.

(MMRs) and share data with the CPU via the main memory, with variable support

for virtual memory and address translation [57, 200]. By separating the design of the

CPU and the accelerators, SoC designers can combine any combination of the two to

achieve different performance targets [229]. Such a coupling comes at the cost of in-

vocation [2, 196, 301] and data movement overheads [63, 196, 278, 281], however.

Invocation overheads and data movement overheads, specifically pertaining to inter-

accelerator data movement, are discussed further in following sections.

2.1.1 Accelerator Programming

The high invocation latency of LCAs has received significant attention over the past

two decades as such architectures have become increasingly more important. Per-

haps the most well known solution to the problem, one that is used in contemporary

architectures, is the use of user-space command queues. Defined in Heterogeneous

System Architecture (HSA) [157] specification as Command Queues and in CUDA as

Streams [231], user-space command queues are ring buffers in an application’s address

space that are used to submit task descriptors directly to the accelerator using regular

stores. These buffers are mapped into the application’s address space via a system call

into the accelerator driver, which also notifies the accelerator of the queue’s physical lo-

cation, thus enabling direct communication. Prior work has shown how the hardware’s

ability to monitor only a fixed number of queues at any given time can be a performance
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bottleneck [219],

Prior work has also extensively explored additions to ISAs to provide a TCA-like

interface to LCAs. Wang et al. [277] propose the EXOCHI architecture that eases the

integration and programming of LCAs. EXOCHI abstract accelerators away from host

CPUs using an Exoskeleton (EXO) sequencer that is responsible for scheduling ap-

plication threads onto the accelerator. EXO-sequencers must conform to IA-32 [127]

inter-sequencer communication defined earlier in Multiple Instruction Stream Proces-

sor (MISP) [104] architecture. This allows the host processor to move a thread context

to the sequencer using an instruction called SIGNAL, and sequencer to send interrupts

to the host for address translation and exception handling (e.g., kernel completion). In

order to ease programming of accelerators, the authors also propose C for Heteroge-

neous Integration (CHI), an OpenMP based framework for writing heterogeneous code

that abstracts away host/acceleration interactions (e.g., issuing SIGNAL instruction).

Pangaea [285] is a CPU-GPU heterogeneous SoC that builds on top of EXOCHI and

introduces user-space interrupts and ISA extensions for efficient host-side handling of

user-defined events (e.g., write to shared memory by the accelerator).

IBM Wire Speed Processor [76], and its subsequent implementation as Pow-

erEN [34, 150], introduced the icswx instruction, an unprivileged instruction that is

used to submit computation requests from host cores to accelerators. These requests are

encoded into a coprocessor request block (CRB), a cache-aligned 64-byte block that

includes input and output data addresses, the computation to be performed, and any ad-

ditional arguments. IBM POWER9 and z15 processors incorporate a data compression

accelerator, called NXU [2], that is also accessible using an unprivileged instruction

called DFLTCC. While POWER9 uses a longer 128-byte CRB to submit jobs with

DFLTCC, z15 uses general purpose registers to encode accelerator kernel parameters.

Modern Intel Xeon processors have come to integrate several accelera-

tors [301], like Intel Data Streaming Accelerator [123], that are programmed us-

ing a dedicated set of instructions defined under Accelerator interfacing Architec-
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ture (AiA). AiA includes instructions to configure the MMIO registers for pri-

vate accelerators (MOVDIRI/MOVDIR64B), enqueue requests to shared accelerators

(ENQCMD/ENQCMDS), and monitor/wait for task completion (UMONITOR/UMWAIT).

2.1.2 Accelerator Chaining

Applications are often composed of several kernels that can be accelerated on mod-

ern systems. This makes hardware support for accelerator chaining lucrative since it

can greatly minimize (or even completely eliminate) the need to move data through

the main memory, avoiding CPU intervention and main memory bandwidth bottle-

necks, especially under contention. Such a trend exists for both datacenter-scale big

data workloads [90] as well as edge uses like mobile workloads [196] and self-driving

cars [67, 170]. Examples of chaining hardware that can forward data between acceler-

ators include:

• PCIe peer-to-peer DMA (P2PDMA) [172, 240] allows devices under the same

PCIe root complex to access each other’s memory using DMA engines, without

copying through main memory. P2PDMA works by moving data between PCIe

BAR (base address register) regions, regions of device memory exposed into the

CPU virtual address space by device drivers. While the size of each region has

traditionally been limited to 256 MB, PCIe resizable-BAR enables arbitrarily

large BAR sizes, allowing entire device memories to be exposed [20].

• ARM AXI-Stream [24] protocol enables direct communication between on-chip

devices connected over ARM AMBA interconnect via a READY/VALID hand-

shake protocol. This can potentially include intermediate buffers to minimize

stalls, similar to “flow buffers” for audio/video applications [298], and can be

implemented over a crossbar interconnect, enabling parallel communication be-

tween multiple unique producer/consumer pairs.
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• FUSION [152] is a timestamp-based and lease-based cache coherence protocol

for accelerators that optimizes for data movement between cache-based accelera-

tors. FUSION allows the producer to proactively push data from its private cache

to the consumer’s cache, along with the associated lease, without coherence di-

rectory communication. By minimizing the number of hops, FUSION can im-

prove performance compared to non-coherent (i.e., DMA based) and traditional

fully-coherent accelerator architectures [88].

• Memory controller optimizations like accelerator-to-accelerator short-

circuiting [298] perform store-to-load forwarding inside the memory controller

queues where the store and load requests originate from the producer and con-

sumer accelerators, respectively. This builds on the intuition that the producer’s

stores might still be pending in the memory controller queue when the consumer

starts executing. Such forwarding can not only reduce memory access latency,

but also reduce the number of precharges and activates. Such kind of forwarding

can be combined with memory controller scheduling policies like DASH [271]

and FLOSS [304] that optimize bandwidth allocation to the main memory in

heterogeneous architectures based on the requesting applications’ quality of

service requirements.

Designing hardware support for accelerator chaining is only part of the solution,

however. Programming for and utilizing such hardware is a key challenge. State-of-

the-art systems put this responsibility on programmers, requiring that the application

wait for all communicating accelerators to be made available before making an API call

that performs the actual transfer. This hurts application performance since there is no

way of knowing when a consumer accelerator might be available and, thus, if forward-

ing would be beneficial at all. Furthermore, stalling the producer kernel’s context can

prevent the accelerator from being used by other applications, hurting system utilization

and fairness. Listing 2.1 highlights this tradeoff in CUDA, where data produced from
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gpu0 needs to be forwarded to gpu1 for consumption. Specifically, the programmer

must make a choice based on the allocation on line 8 whether they want to write inter-

mediate results to CPU or wait for gpu1 to be available. While it is possible to allocate

space on both GPUs from the get go, it would lead to wasted memory utilization.

Listing 2.1: Example of CUDA peer-to-peer (P2P) copy, highlighting the need for a

context on both the producer and the consumer GPU before a copy can be initiated.

1 int *gpu0, *gpu1;

2

3 assert(cudaMalloc((void**)&gpu0, sizeof(int) * ARRAY_SIZE) ==

cudaSuccess);

4 cudaSetDevice(0);

5 producerOnGPU0<<<blocks, threads>>>(gpu0);

6

7 /* Attempt memory allocation on gpu1 */

8 if (cudaMalloc((void**)&gpu1, sizeof(int) * ARRAY_SIZE) ==

cudaSuccess) {

9 /* Allocation successful.

10 * Now we can directly copy data from gpu0 to gpu1

11 */

12 cudaMemcpy(gpu1, gpu0, sizeof(int) * ARRAY_SIZE,

13 cudaMemcpyDeviceToDevice);

14 cudaFree(gpu0);

15 } else {

16 /* Allocation failed. Now there are two options while we

17 * wait for space on gpu1:

18 * 1. Copy data to cpu and then copy to gpu1

19 * 2. Keep data on gpu0 and wait to forward

20 */

21 }

22

23 cudaSetDevice(1);

24 consumerOnGPU1<<<blocks, threads>>>(gpu1);
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Solutions to ease forwarding include GAM+ [57], a hardware block that virtual-

izes accelerators and abstracts away accelerator management from the programmer,

requiring the application to send in only a task descriptor of the kernel it wants to

execute (e.g., 3D FFT). The requested kernel is then broken down into individual ac-

celerator requests based on the hardware capabilities (e.g., 3D FFT can be expressed

using 2D FFTs) and the input size. The accelerator requests are then scheduled as ac-

celerator resources become available, utilizing P2PDMA like semantics to move data

between producer/consumer accelerators whenever possible. VIP [196] is another ac-

celerator virtualization framework that abstracts away accelerator management from

the programmer. VIP modifies software libraries and drivers to enable applications to

schedule a burst of requests on a chain of accelerators. This information is communi-

cated to each accelerator in the chain, which are modified to incorporate buffers that

hold context information for each chain they are a part of, along with a scheduler that

chooses which chain to process the next request from. Combined with AXI-Stream like

buffers, this enables seamless pipelining of accelerators without any host intervention.

A key difference between GAM+ and VIP is that the latter guarantees forwarding of

data while the former utilizes it opportunistically. In addition, accelerator scheduling

is centralized in GAM+ while VIP adopts a distributed scheme. Cohort [281] provides

a queue-based interface for CPU/accelerator and accelerator/accelerator communica-

tion. Cohort supplements accelerators with a Cohort Engine that can read from/write to

software-defined queues in main memory. These queues are created by programmers

when defining accelerator chains, and are communicated to Cohort Engines via MMRs

configured by device drivers.

Another challenge in chaining accelerators is the reorganization of data between

the producer and the consumer accelerators. This might especially be needed for ap-

plications in datacenters that combine accelerators from different domains [278]. Data

motion accelerator (DMX) [278] is an accelerator that can perform on-the-fly data reor-

ganization, eliminating the need it to be performed by the CPU. Not all systems suffer
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from this problem, however. SoCs are often tightly integrated with accelerators that are

designed to be interoperable [236].

2.2 Processing in Memory

The idea of processing in memory (PIM) dates back to the 1970s [259], but it has been

hard to realize due to difficulties in manufacturing high density DRAM and logic on the

same die [149]. Recent trends in both workload characteristics and system bottlenecks

have pushed the idea to forefront in the past decade, with industrial prototypes indicat-

ing that manufacturing issues have at least partially been surmounted [156, 163, 270].
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Figure 2.2: Performance/overhead spectrum of processing in memory.

The placement of functional units (FUs) is a key determinant of the performance

and area overheads of adding PIM. Figure 2.2 shows three broad categories of PIM

architectures. At the lower end of performance/area spectrum is the placement of func-

tional units closer to, but still outside of, memory chips than traditional architectures

(e.g., on a logic layer inside 3D stacked memory) [9, 26, 33, 48, 73, 146, 215, 290].

Being outside of the memory cells affords great flexibility in terms of the FU architec-

ture, up to and including traditional processors [9, 26, 33, 215] whose performance is
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limited largely by thermal constraints only [70]. But, these architectures also offer the

least speedup since the compute/memory interface is still limited by the width of the

memory bus.

The next step on the spectrum is bank-level PIM where FUs are placed inside each

memory bank, usually after the column decoder [3, 108, 145, 155, 156, 161, 163, 164].

While being significantly more area constrained, such architectures benefit from signif-

icantly reduced data movement latency and energy by avoiding communication over

the memory bus. Moreover, computing across all banks achieves wide data paral-

lelism, with some architectures supporting lock-step PIM operations across multiple

banks [3, 108, 155, 156, 161, 163] to improve performance. The latter, in particular,

has been the basis for commercial implementations from SK Hynix [108, 155, 163] and

Samsung [156, 161], shown in Figure 2.3.
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MACGlobal
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Figure 2.3: High level architecture of bank-level PIM prototypes built by Samsung (a)

and SK Hynix (b). RF: register file, MAC: multiply and accumulate, AF: activation

function.

Samsung’s design, based on HBM, incorporates a functional unit at each bank that

can perform a row buffer wide SIMD computation on data from the bank row buffer

and local register file (RF) (Figure 2.3a). The results of the computation can be written
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back to the bank and then retrieved by the host using regular loads. SK Hynix’s design,

meanwhile, is based on GDDR6 and is tailored for machine learning algorithms, incor-

porating a multiply-and-accumulate (MAC) unit that is fed from the bank row buffer

and from a global buffer that is shared across all banks (Figure 2.3b). This result can

optionally be passed through another ALU that implements an activation function (AF,

e.g., ReLU). Both the results are stored in temporary registers that can be read using

dedicated instructions.

At the high end of the PIM performance/area spectrum is the placement of func-

tion units inside memory subarrays, called in-situ PIM [18, 250, 256, 286], offering

extremely wide data parallelism (e.g., 8 KB across a rank [250]) and further reduc-

tions in data movement energy. These benefits incur substantial area and complexity

overheads, however. Recent work suggests that MATs inside subarrays are packed sig-

nificantly more tightly than believed earlier, further propounding the overheads [184].

While the above presented classification categorizes most PIM architectures, there

are some exceptions. Charge sharing techniques [84, 249, 250] violate DRAM timing

constraints and activate multiple rows within a subarray to perform bulk bit-wise op-

erations like copy [84, 249] and logical AND/OR [84, 250]. These techniques modify

the memory controller and/or peripheral DRAM circuitry, but not the memory cells

themselves. UPMEM [99, 270] is a PIM architecture that integrates a RISC-style fine-

grained multithreaded processor, called a data processing unit (DPU), at each memory

bank. Each DPU has a local instruction and data scratchpad memory, and communi-

cates with the memory bank using a DMA engine. While similar to the bank-level

PIM architectures discussed before, UPMEM architecture is significantly more com-

plex and differs in that it does not perform computation at the row buffer itself. Rather,

DPUs appear as another host to the memory banks. Moreoever, DPUs are independent

Turing-complete processors that are not synchronized to DRAM timing parameters,

unlike other bank-level PIM architectures.
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2.2.1 PIM Programming

PIM offloading can be broadly categorized as either coarse grained or fine

grained [197]. Coarse grained offloading involves the invocation of an entire kernel

(e.g., streamcluster [48]) on oft complex PIM units like course grained reconfigurable

arrays (CGRAs) [73] and traditional processors [9, 26, 270]. These PIM units can be

programmed through MMRs [9, 32, 48, 73] or ISA extensions [26], entailing significant

modifications to the memory controller to perform PIM computation while handling

non-PIM requests from the host [32, 48, 73].

Fine grained offloading, on the other hand, involves the host submitting requests

that are significantly more elementary in their computation (e.g., vector addition [161]),

similar to CPU instructions. Given the nature of these PIM instructions, the PIM

units tend to be simpler in their complexity and often adhere to DRAM timing con-

straints [7, 108, 161, 198]. This not only makes the architecture more flexible, but also

simplifies memory controller side logic since the host is responsible for injecting PIM

instructions [197]. While the host is traditionally also responsible for correctly order-

ing PIM instructions, Nag et al. [197] show how traditional memory barriers are neither

necessary nor sufficient for correctly ordering PIM requests. They propose Orderlight,

a lightweight memory barrier that prevents reordering of PIM requests all the way from

the host processor to the memory controller. Unlike traditional fences that stall the

processor pipeline until prior memory accesses are globally visible, Orderlight barriers

require each component that the PIM instructions pass through to maintain ordering.

This is done by issuing the barriers to the memory, alongside loads, stores, and PIM

requests, allowing the interconnect and memory controller to be aware of the relative

ordering of PIM requests.

Maintaining coherence between host and PIM units is another key challenge. While

some architectures leave this responsibility to the programmer [108, 161] or simply

mark PIM memory as uncacheable [9, 48, 198], several optimizations have been pro-
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posed. PIM-Enabled Instructions (PEI) [7] is a locality-aware PIM offloading frame-

work that executes the instructions either on the host or on PIM based on the location

of its input operands. LazyPIM [32] is a PIM-aware coherence protocol that is inspired

from transactional memory. PIM kernels speculatively performs computation assum-

ing exclusive access to data and submit the set of read and write addresses accessed to

the host CPU. If the CPU detects a conflict in accesses (e.g., PIM read a CPU written

address), the CPU flushes the conflict lines and restarts the PIM kernel.

2.3 Emerging Memory Technologies

2.3.1 Intel Optane

Intel introduced Optane Data Center Persistent Memory Module (DCPMM, simply re-

ferred to as Optane in this dissertation) in 2019, a PCM-based 3D Xpoint memory tech-

nology that is significantly more dense than traditional DRAM technology [121, 50].

Packaged in a DIMM form factor, Optane is byte-addressable and fits into regu-

lar DDR4 slots, communicating using a custom DDR4-based protocol called DDR-

T [122, 307]. While extremely high capacity and energy efficient, Optane suffers from

worse performance and limited write endurance, all properties of the underlying ma-

terial. Prior work has shown that Optane achieves nearly 2.5x lower sequential read

bandwidth compared to DRAM and about 6x lower write bandwidth [129, 218, 293].

These evaluations show a non-linear relationship between increasing concurrency and

write bandwidth. Being PCM-based also limits the life of each memory module in

terms of its write endurance [121].

Optane can be configured in two modes: App Direct and Memory. App Direct mode

exposes Optane as a fast storage device with an optimized file system that bypasses the

Linux page cache, enabled by its byte-addressable capabilities [21, 291]. Memory

mode, meanwhile, exposes it as large main memory with DRAM serving as a direct-
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mapped cache to hide its performance deficiencies. Within App Direct mode, it is also

possible to interface with the memory directly without any file system. This allows

libraries like Memkind to expose Optane as a memory-only NUMA node, creating a

flat memory hierarchy between DRAM and Optane and enabling direct use of the large

memory pool by applications [30]. We use this support to compare DRAM and Optane

performance.

In its Q2 2022 financial report, Intel announced that it is closing its SSD business,

including Optane, and writing off any leftover inventory [124]. This was followed by

a technology brief detailing a shift in strategy to CXL-attached memory [125]. While

no longer in production, Optane continues to serve as an effective evaluation platform

for high capacity byte addressable memory technologies [68, 143]. Furthermore, CXL-

expanded memory can be backed by SSDs [125, 140, 216, 243, 295] and even Optane

itself [125], ensuring broader applicability of findings related to Optane.

2.3.2 Compute Express Link

Compute express link (CXL) [60] was announced in 2019 [37] as an industry-standard

interconnect technology to connect processors, devices, and memory expanders over

the PCI Express bus interface. The CXL standard defines three protocols: CXL.io for

I/O devices, CXL.cache for cache-coherent devices (e.g., caching accelerators), and

CXL.memory for memory-enabled devices (e.g., memory expanders). The CXL 1.1

specification [61] defines three types of devices and what combination of the three

protocols each would use.

Of the three types of CXL devices, Type-3 is of particular note. Defined for memory

expanders, Type-3 devices use CXL.io and CXL.memory protocols to allow for coher-

ent expansion of main memory capacity over PCIe. By providing load/store semantics

similar to traditional main memory, Type-3 devices (simply referred to as CXL memory

henceforth) provide transparent expansion of main memory without the limitations of
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traditional DDR interfaces. Compared to DDR, PCIe offers higher per-pin bandwidth

and lower per-bit transfer energy [262]. Moreover, the memory technology across the

interconnect is not bound to be DRAM, allowing for use of high density media like

SSDs [125, 140, 216, 243, 295] and Optane [125], as shown in Figure 2.4.
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Figure 2.4: CXL Type 3 devices enable transparent, coherent, and technology agnostic

expansion of main memory.

Like Intel Optane, CXL memory capacity comes at a performance cost. While

performance varies with the design of the CXL controller itself [262], CXL adds at

least 70 nanoseconds to round-trip memory access latency [252], not accounting for

contention or memory technology variations at the expander. The achievable bandwidth

is also limited by the underlying PCIe technology standard, which is 64 GB/s for the

latest PCIe 5.0 x16 link [284]. In comparison, our DDR4-based evaluation system in

Chapter 5 achieves 157 GB/s across 8 memory channels. While PCIe 6.0 nearly doubles

this bandwidth to 121 GB/s, it has not yet entered production at the time of writing.

2.4 GPU/Host Communication

GPUs predominantly use a push-based communication paradigm where the program-

mer is responsible for moving data up-front using DMA engines [16, 203]. This “copy

then execute” model puts a significant burden on the programmer when it comes to

minimizing data movement overheads, such as by overlapping it with computation in a

pipelined fashion.
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Nvidia introduced Unified Virtual Addressing (UVA) [247] in 2011 to ease this

burden by integrating GPU memory into CPU’s address space. This enables passing

of CPU pointers to GPU kernels for direct “zero-copy” access and makes it possible to

move data between GPUs without going through CPU bounce buffers. Building on top

of UVA, Unified Memory (UM) [107, 203] provides the illusion of a single large coher-

ent memory pool consisting of CPU and GPU memory that requires no programmer-

initiated copies. Unlike UVA, UM transparently moves data between CPU and GPU

memory at a page granularity on-demand, serving as a replacement for the traditional

“copy then execute” model. More importantly, however, is the fact that UM allows

for GPU memory “oversubscription” wherein kernels can create allocations larger than

GPU memory size. This is especially useful for machine learning (ML) applications

and is supported by major ML frameworks [1, 51] and GPU simulators [174].

Unified memory’s convenience comes at the cost of performance, however. The

cost of servicing a single page fault is in the range of 20-45µs [79, 310] and is largely

dominated by software overheads [11]. These properties limit the use of UVM in high-

performance scenarios.

2.5 Large Language Models

The advent of modern LLMs is largely attributable to the Transformer [272], a machine

learning network architecture that is able to extract word meanings and contextualize

them as part of the broader prompt. Figure 2.5 shows the architecture of a decoder-

only transformer model and the auto-regressive nature of LLM inference. At the heart

of a decoder block is the multi-head attention (MHA) layer. The symbols Q, K, and

V represent the query, key, and value vector representation of each token, obtained by

multiplying the embedding vector of each token with the respective weight matrices.

Each self attention block, called an attention head, extracts different semantic meaning

from each token based on its weights. The decoder concatenates the output of each
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head with the original vector representation of each token to update its meaning and

then passes it through a feed forward network (FFN) layer, often implemented as a

multi-layer perceptron. FFN layer further refines the meaning of each token based on

learned weights, producing another delta vector that is used to update each token.
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Figure 2.5: Architecture of a decoder-only LLM. Prefill and decode perform GEMM

and GEMV operations, rendering them compute and memory bound, respectively.

Intuitively, the query representation of a token can be imagined to be asking the

question “Are any tokens before me relevant to me”, while the value representation of

each relevant token would be answering “Yes, I am!”1 When the query representation

of a token is multiplied with the key representation of each token (vector dot product),

the result is a value in the range (−∞,+∞), with higher values representing stronger

correlation. Passing this result vector through softmax returns a probability distribution

in the range [0, 1], signifying the relative importance of each other token in the sentence

to the token under consideration. Finally, each of these probability values are multiplied

with the value representation of the corresponding token and summed up, providing us

with a delta vector. This delta vector, when added to the token embedding, modifies

the meaning of the token in a way that is (hopefully) more refined and contextually

richer. Repeating this operation across multiple heads in parallel, each with its own set

1Examples and intuitive explanations in this section are heavily based on Grant Sanderson’s wonder-

ful visual explainer series [244].
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of query, key, and value weights, allows for different semantic interpretations of the

input to influence the representation of each word.

Figure 2.5 also highlights two distinct inference phases: prefill and decode. During

prefill, the entire input sequence is parsed by the model in a series of GEMM com-

putations to produce the first token and store the key/value (KV) representations in a

KV cache. In successive iterations, the decode stages utilize the KV cache and parse

only the previously generated token in a series of GEMV computations to predict the

next token. Note that the initial prompt is not parsed in its entirety because the final

representation of each token is dependent on the preceding tokens only. This is why the

KV cache stored earlier is useful, since it avoids redundant computation for the already

parsed tokens.

Because of differences in the operational intensity of GEMM and GEMV, prefill

is usually compute-bound while decode is memory-bound. Since most generative AI

applications produce thousands of output tokens (e.g., LLaMa 4 has a context window

size of 10 million tokens [190]), LLM inference is largely memory bound. A common

technique to improve data reuse is batching of multiple requests, effectively turning the

GEMV computations in decode phase to GEMM computations. The size of each batch

is, however, limited by the storage requirements of the KV cache for each prompt.

Memory performance is not the only limiting factor, however. Model sizes since

the introduction of transformers have exploded in size, from 175 billion in GPT-3 in

2020 [35] to 2 trillion in LLaMa 4 in 2025 [190]. Larger models incorporate more at-

tention heads and larger weight matrices, allowing for semantically richer understand-

ing of text and improved model performance. This exponential growth, however, has

far outpaced the growth in AI hardware memory capacity as well [87], demanding so-

lutions that offer both high bandwidth and capacity.
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2.6 PIM on Emerging Memory Technologies

Given the memory capacity and performance demands of applications like LLMs (Sec-

tion 2.5), recent work has looked at putting PIM (Section 2.2) on high capacity memory

technologies (Section 2.3).

PIM on CXL devices is particularly attractive because CXL devices are not as area

and power restricted as traditional DDR memory. Memory-Mapped Near-Data Process-

ing (M2NDP) [101] extends Type-3 CXL devices (Section 2.3.2) with a RISC-V [25]

based fine grained multithreaded processor in a near memory PIM fashion (Section 2.2).

M2NDP modifies the CXL device to expose an uncacheable memory region that appli-

cations can access using regular CXL.mem reads/writes to register PIM kernels, launch

them, or check the status of their execution using a predefined ISA. CENT [93] com-

bines near memory PIM and bank level PIM (Section 2.2) on Type-3 CXL devices to

distribute the processing of LLM decoder blocks (Section 2.5) on the compute unit

most suited for each kernel. Specifically, the bank-level PIM architecture is based on

GDDR6-AiM [108, 155, 163] and is optimized for large data kernels like GEMV. The

near memory PIM units, meanwhile, are composed of RISC-V cores and accelera-

tors that compute smaller kernels like softmax. Communication between the two PIM

units is performed using a shared buffer, and they are programmed by writing instruc-

tions from the host to a memory-mapped instruction buffer. The two PIM units are

programmed by writing instructions from the host to a memory-mapped instruction

buffer. Intra-device communication is handled using an on-chip shared buffer while

inter-device communication is performed via CXL.mem reads/writes to this shared

buffer.

MAGIC [153] is a memristor [54, 260] based PIM architecture that performs

sub-array level NOR computation in memristor crossbar arrays (used in non-volatile

ReRAM [45]) by manipulating column voltages. MPIM [120] is another memristor

based PIM architecture for low power edge devices that exploits analog timing charac-
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teristics of memristors to perform bank-level nearest neighbor search. It also supports

logical bit-wise computations via additional sense amplifiers. Resch et al. [232] demon-

strate that STT-MRAM [19, 223] based computation is idempotent, i.e., any operation

repeated multiple times produces the same result. They utilize this property to construct

MOUSE, a PIM architecture for energy harvesting intermittent computing devices that

supports bank-level bit-wise computations. Resch et al. [233] evaluate the endurance

impact of integrating in-situ PIM (Section 2.2) into byte-addressable nonvolatile mem-

ory. Their analysis reveals how PIM can wear down a 1024x1024 STT-MRAM memory

array in a few days, with cells holding temporary data wearing down faster due to an

imbalance in write frequency. Even with several software and hardware schemes to bal-

ance writes across the memory, endurance improves by up to 2.22x only, highlighting

the need for better memory/PIM codesign to make such architectures a reality.
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3 Relieving Memory Pressure In

SoCs Via Data Movement-Aware

Accelerator Scheduling

Modern smartphone systems-on-chip (SoCs) comprise of several dozens of domain-

specific hardware accelerators dedicated to processing audio, video, and sensor

data [227]. These accelerators, which sit outside the CPU pipeline, appear as pro-

grammable I/O devices to the OS and communicate with the CPU using memory-

mapped registers and shared main memory, sometimes connecting to the last-level

cache [58]. To maximize performance and accelerator-level parallelism [228], applica-

tions can request a chain of accelerators running in producer/consumer fashion [196].

The speedups these chains provide, however, is limited by the fact that the accelerators

communicate via the main memory, creating contention at the memory controller and

the interconnect. This bottleneck will worsen as SoCs become more heterogeneous and

incorporate accelerators for more elementary operations [57].

Techniques to reduce this contention include 1) forwarding data from the producer

to the consumer, i.e., moving data from the producer’s local memory directly to the con-

sumer’s, and 2) colocation of consumer tasks with producer tasks, thus eliminating all

data movement. Examples of forwarding techniques include insertion of intermediate

buffers between producer and consumer accelerators (VIP [196, 298]) or optimizing
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the cache coherence protocol to proactively move data from producer’s cache to the

consumer’s cache directly (FUSION [152]). The former requires design-time determi-

nation of communicating accelerator pairs, while the latter requires that the acceler-

ators use caches and be part of the same coherence domain, limiting their scalability

and flexibility. More recent techniques include ARM AXI-stream [17, 24], which al-

lows multiple producer/consumer buffers to be connected over a crossbar switch, and

Linux P2PDMA [172, 240], which enables direct DMA transfers between PCIe devices

without intermediate main memory accesses. Unlike VIP and FUSION, they allow for

dynamic creation of producer/consumer pairs at run time in order to move data be-

tween them. Efficient utilization of such forwarding techniques, however, remains a

challenge.

Existing systems expect software to explicitly utilize the forwarding mechanism to

move data between producer and consumer [183, 196, 203], requiring knowledge of

task mapping to accelerators. Distributed management of tasks by each accelerator,

however, results in the accelerator’s inability to utilize forwarding mechanisms due to

the lack of knowledge of task mappings to other accelerators. A centralized accel-

erator manager has a global view of the system, allowing implementation of policies

that opportunistically employ forwarding mechanisms to improve accelerator utiliza-

tion and application performance. Unfortunately, the scheduling policies employed

thus far [57, 78] by these managers are not designed to efficiently utilize forwarding

hardware.

Scheduling policies typically prioritize tasks using arrival time, deadline, or laxity.

Such policies can be extended to prioritize tasks that may forward data from a pro-

ducer, similar to FR-FCFS scheduling in memory systems [235], where row buffer hits

are prioritized over older tasks. However, this can lead to unfairness where an appli-

cation with more forwards can starve others with fewer forwards. Therefore, we need

a scheduling policy that can opportunistically perform data forwards while still

providing fairness and quality of service (QoS).
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In this chapter, we introduce RELIEF, an online accelerator scheduling policy that

has forwarding, QoS, and fairness as first-class design principles. RELIEF prioritizes

newly ready tasks over existing ones since they can move data directly from the pro-

ducer’s memory using forwarding mechanisms. RELIEF provides QoS in terms of

meeting task deadlines and fairness in terms of reducing variance in application slow-

down due to contention. It achieves both by tracking task laxity and throttling pri-

ority elevations if they can cause missed deadlines. These properties matter where

tail-latency is important, such as user-in-the-loop smartphone and client-server appli-

cations. We evaluate RELIEF on a suite of vision and machine learning benchmarks

with strict latency constraints on a mobile platform. Our key contributions are:

• An evaluation of data movement overheads for low-latency accelerator chains

used in deadline-constrained vision and machine learning applications. We ob-

serve that some of these applications spend as much as 75% of their execution

time on data movement.

• A novel scheduling policy, called RELIEF, that maximizes utilization of existing

forwarding hardware. RELIEF can be easily integrated into existing hardware

managers and is agnostic of both the forwarding mechanism and the specific

definition of laxity, allowing for wider adoption.

• Extensive evaluation of RELIEF on a simulated mobile SoC, encompassing per-

formance improvements, implementation overheads, and sensitivity to microar-

chitectural design decisions. RELIEF achieves up to 50% more forwards com-

pared to state-of-the-art (SOTA) policies, resulting in 32% and 18% lower main

memory traffic and energy consumption, respectively. Simultaneously, RELIEF

improves QoS by meeting 14% more task deadlines on average, and improves

fairness by reducing the worst-case deadline violation by 14%.
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3.1 Background

General-purpose processors and domain-specific accelerators represent two ends of a

spectrum of performance and flexibility, with the latter trading off the former’s versatil-

ity for improved performance. A middle ground between the two approaches is to have

a set of accelerators for elementary operations that can be stitched together dynamically

by each application to serve its needs [57]. This is supported by the observation that ap-

plications across domains are often composed of similar kernels [92]. Such an approach

eliminates redundancy of hardware functional units along with greatly minimizing the

need for a specialized accelerator for each new application.

In this section, we present a suite of real-time smartphone workloads that are widely

used in modern devices and discuss how they can be broken down into a set of elemen-

tary accelerators. We quantify how memory-bound these accelerators are, motivating

the need for techniques to reduce data movement costs. Next, we discuss the func-

tionality of an accelerator manager [57] and why they are well-equipped to improve

hardware utilization and provide QoS. Finally, we present examples to explain how

SOTA accelerator scheduling policies fall short in utilizing forwarding hardware.

3.1.1 Modern smartphone workloads

We study two important classes of modern smartphone workloads in this chapter: vi-

sion and recurrent neural networks. Both classes together represent a wide variety of

compute-intensive user-facing applications, making them suitable for hardware accel-

eration.

Computer vision: Mobile visual computing applications have exploded in popu-

larity in recent years, ranging from complex photography algorithms to AR/VR appli-

cations [74]. These applications often utilize several common image processing ker-

nels. One example is Canny edge detection [38], which is used in face detection, both

alone [181] and as part of neural network pipelines [257]. Another example is Har-
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Figure 3.1: Kernels in different image processing and RNN applications.
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ris corner detection [105], which is used for feature extraction in panorama stitching

algorithms [168], especially in VR applications [173]. Richardson-Lucy deconvolu-

tion [178, 234] is an image deblurring algorithm that sharpens shaky camera images.

These three applications are commonly fed images directly from an image signal pro-

cessor (ISP) that captures raw camera output and performs preprocessing operations

like demosaicing, color correction, and gamma correction [109].

Recurrent neural networks (RNNs): These are a class of machine learning ker-

nels used for time-series data, wherein the inference at a time step can affect the in-

ference at a later time. This makes them particularly well-suited for speech recogni-

tion [226] and language translation [263] applications in modern phones. We evaluate

two different RNN applications: long short-term memory (LSTM) [114] and gated re-

current unit (GRU) [49]. Given their widespread use, RNNs have been the subject of

prior work in low-latency accelerator design [85] and accelerator scheduling [53, 299].

Details about these benchmarks, including their deadline and input size, are listed

in Table 3.5. These applications can be represented as directed acyclic graphs (DAGs)

of seven compute kernels, each of which can be implemented as a separate hardware

accelerator, as shown in Figure 3.1. The description of each accelerator is listed in Ta-

ble 3.1. These accelerators are ultra low-latency, spending significant time moving data

to/from memory. The data movement overhead for each accelerator and each applica-

tion is quantified in Table 3.2. For each application, the table compares the memory

time without forwarding hardware to an ideal scenario where forwarding hardware is

used whenever possible.

The percentage of time spent on data movement by each accelerator is primarily a

function of its operational intensity. Accelerators like convolution have abundant

data reuse, which leads to high operational intensity and a higher compute-to-memory

access time ratio. Meanwhile, elem-matrix has little to no data reuse depending

on the operation requested, which causes its run time to be dominated by memory ac-

cess latency. The frequency of use of each accelerator type dictates how much time
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Table 3.1: Elementary accelerators used in this work. SPAD stands for local scratchpad

memory.

Accelerator (SPAD size in B) Description

canny-non-max (262,144) Suppress pixels that likely don’t belong to edges.

convolution (196,708) Convolution with a max. filter size of 5x5.

edge-tracking (98,432) Mark and boost edge pixels based on a threshold.

elem-matrix (262,144) Element-wise matrix operations including add,

mult, sqr, sqrt, atan2, tanh, and sigmoid.

grayscale (180,224) Convert RGB image to grayscale.

harris-non-max (196,608) Enhance maximal corner values in 3x3 grids and

suppress others.

ISP (115,204) Perform demosaicing, color correction, and

gamma correction on raw images.

each application spends on data movement. GRU and LSTM, which exclusively use

elem-matrix, spend nearly 75% of their run time moving data between accelerators

while Deblur, which relies heavily on convolution, spends a mere 3%. More im-

portantly, we can see how efficient use of forwarding hardware can significantly reduce

data movement overheads, especially for memory heavy RNN applications.

3.1.2 Accelerator manager

The use of dedicated hardware to manage the execution of accelerators frees up the

host cores from performing scheduling and serving frequent interrupts from acceler-

ators [57], especially for applications with thousands of low latency nodes. 1 The

manager implements a runtime consisting of a host interface, a scheduler, and driver

functions for each accelerator type.

1We use the terms node and task interchangeably.
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Table 3.2: Absolute time spent in compute vs data movement. These are sum totals and

do not account for computation/communication overlap.

Accelerator
Time (us)

Compute Memory

canny-non-max 443.02 30.45

convolution 1545.61 18.25

edge-tracking 324.73 13.56

elem-matrix 10.94 30.44

grayscale 10.26 15.23

harris-non-max 105.01 13.77

ISP 34.88 8.71

Application
Time (us)

Compute Mem (no fwd) Mem (ideal)

canny 3539.37 237.74 173.29

deblur 15610.58 509.80 420.06

gru 1249.31 3343.72 1608.01

harris 6157.30 372.19 303.16

lstm 1470.02 3879.98 1797.77

Host interface: The CPU and the hardware manager communicate via shared main

memory, with user programs submitting tasks to the manager via either a system call

or user-space command queues [157, 231].

Scheduler: The submitted tasks are written into queues in the main memory that can

be read directly by the hardware manager. The hardware manager performs sorted in-

sertion of these tasks into their respective accelerator’s ready queue using a scheduling

policy. These policies typically sort using arrival time, deadline, or laxity.

Drivers: Tasks from ready queues are then launched onto accelerators via driver func-
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tions. Drivers manipulate accelerators or their DMA engine’s memory-mapped regis-

ters (MMRs) to launch computations or load/store data, respectively.

Hardware managers can be realized as an accelerator themselves or as a microcon-

troller, with the latter trading off latency for ease of implementation and flexibility [78].

3.1.3 Limitations of SOTA scheduling policies

To illustrate how contemporary accelerator scheduling policies underutilize forwarding

mechanisms, consider the two DAGs presented in Figure 3.2a. The number of each

accelerator type available is indicated in the “Accelerators” box. The color inside each

node represents the type of resource it requires. The upper number is the execution

time of the node while the lower number is the deadline. The node deadlines have been

computed using critical-path method assuming both DAGs arrive at time 0 and have

deadlines of 16 and 15 time units, respectively.

We compare the schedules generated by four SOTA policies to an ideal schedule.

Each of the policies presented below work by sorting a per accelerator-type ready queue

based on the described criteria. As an accelerator of a given type becomes available,

the manager runtime pops the head of the queue for execution.

1. First Come First Serve (FCFS): Simplest baseline policy where incoming tasks

are appended to the tail of the ready queue. FCFS represents the non-preemptive

version of round-robin scheduling used in GAM+ [57].

2. Global Earliest Deadline First (GEDF): A straightforward extension of the

uniprocessor optimal Earliest Deadline First (EDF) policy, where the tasks are

sorted based on increasing deadline. There are two variants depending on how

the task deadlines are computed:

(a) GEDF-DAG (GEDF-D): Uses the deadline of the DAG that the task belongs

to as the task deadline. This was previously used in VIP [196].
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(b) GEDF-Node (GEDF-N): Sets the task deadline by performing critical-path

analysis on the DAG. This is amongst the most well-studied policies in real-

time literature [241, 294, 303].

3. Least Laxity First (LL): Another uniprocessor optimal scheme [66], this policy

works by sorting tasks in increasing order of their laxity, which is defined below

in Equation 3.1. The deadline used here is set using the critical-path method.

laxity = deadline − runtime − current time(3.1)

4. LAX [299]: A variant of LL that de-prioritizes tasks with a negative laxity in favor

of tasks with a non-negative laxity to improve the number of tasks that meet their

deadline. We use this variant of LL for comparison in the rest of the chapter.

5. HetSched [12]: A least-laxity first policy that assigns task deadlines using the

following equation:

deadlinetask = SDR × deadlineDAG(3.2)

Here, sub-deadline ratio (SDR) quantifies the contribution of a task to the execu-

tion time of the path it is on.

Figure 3.2 shows the possible schedules generated by each of the policies above.

The figures shows both cases, one where data is forwarded from producer to consumer

(brown arrow), and another when computation is colocated, putting the consumer com-

putation on the same accelerator as the producer, thereby eliminating all data movement

(green arrow). For the same number of forwards, the policy that generates more coloca-

tions is therefore the better one. Note that intermediate results are dispensable; we only

care about the final output. Looking at the ideal schedule in Figure 3.2b, we observe

that it not only meets deadlines, but also achieves 5 forwards and 2 colocations. The

ideal policy is able to achieve these forwards and colocations by running the consumer
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nodes immediately after producer nodes, allowing for better utilization of the afore-

mentioned forwarding techniques. To the best of our knowledge, this is an optimization

that no current scheduling policy performs. All other policies, barring GEDF-D, meet

the deadline but miss out on forwarding opportunities. FCFS achieves 5 forwards, but

performs no colocations. GEDF-D achieves better forwarding with 5 forwards and 1

colocation but misses deadlines. GEDF-N and HetSched produce the same schedule

where they meet deadlines but with sub-optimal number of colocations. LAX has a

different schedule than GEDF-N/HetSched, but achieves the same number of forwards.

We, therefore, need a scheduling policy that exploits forwarding opportunities while

being deadline aware.

3.2 RELIEF: Relaxing Least-laxity to Enable Forward-

ing

3.2.1 Scheduling algorithm

We now present RELIEF, RElaxing Least-laxIty to Enable Forwarding, our proposed

LL-based policy that attempts to maximize the number of data forwards while deliver-

ing QoS. The key idea behind the policy is to promote nodes whose parents have just

finished execution, ensuring that the children can forward the data from the producer

before it is overwritten. To reduce unfairness and missed deadlines such promotions

might cause, RELIEF employs a laxity-driven approach that throttles priority escala-

tions when deadlines could potentially be missed. By combining priority elevations

with laxity-driven throttling, RELIEF achieves the ideal schedule shown in Figure 3.2b

as well as the ideal data movement time in Table 3.2. We can see from the figure how

RELIEF’s behavior deviates from LAX, another LL-based policy, at timestep 7, where

RELIEF favors the second DAG’s newly ready child over existing ready nodes with

lower laxity and deadlines.
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Figure 3.2: Comparison of FCFS, GEDF-D, GEDF-N, LAX, and HetSched to an ideal

schedule. RELIEF achieves the ideal schedule. Brown and green arrows represent

forwarding and colocation, respectively. The “Accelerators” box indicates the available

number of each accelerator type.
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The RELIEF algorithm is presented in Algorithm 1. Newly ready nodes whose par-

ents have just finished execution are called forwarding nodes, since they can potentially

forward data from the producer’s local memory. RELIEF schedules these forwarding

nodes immediately if there are resources available, bypassing nodes with lower laxity

if they can meet their deadline under a LL scheme. If no priority escalation is possi-

ble, the algorithm proceeds in a vanilla LL fashion. We also experiment with LAX’s

de-prioritization mechanism that allows tasks with non-negative laxity to bypass those

with negative laxity in the ready queue (Section 3.1.3). While this mechanism can im-

prove the number of tasks that complete by their deadline (Section 3.4.4), we show that

it can lead to unfairness in Section 3.4.5.

RELIEF works by creating a laxity-sorted list of candidate forwarding nodes, called

fwd nodes, from newly ready nodes (Algorithm 1, lines 2-8). We store laxity as dead-

line - runtime, subtracting the current time from it when manipulating the ready queue

(Algorithm 2, line 6). The candidate nodes are then inserted into the ready queue at

either the front (Algorithm 1, line 17) or at the position dictated by their laxity (Al-

gorithm 1, line 22). A candidate node is escalated in priority only if 1) the number

of forwarding nodes in the ready queue for an accelerator type is less than the num-

ber of idle instances of that type (controlled by max forwards), and 2) the function

is feasible() returns true. The first condition ensures that forwarding nodes are

always the next to run, ensuring their input data is still live in its producer’s local mem-

ory. is feasible() returns true if the priority escalation of the candidate node is

unlikely to cause deadline misses. Our evaluation shows that predicting node runtime

once at the time of insertion into the ready queue has sufficient accuracy (Section 3.4.6).

The key to minimizing missed deadlines is is feasible()’s ability to predict

which node promotions might cause them. It takes three arguments: the ready queue,

the candidate forwarding node, and its position in the ready queue based on laxity. In

our implementation, presented in Algorithm 2, we use a laxity-driven approach. For

each node in the ready queue that has a higher priority than the candidate node, we
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Algorithm 1: RELIEF

1 Function RELIEF(finishing node):

2 for child ∈ finishing node.children do

3 child.cmplt parents += 1

4 if child.cmplt parents == child.num parents then

5 child.runtime = predict runtime(child)

6 child.laxity = child.deadline - child.runtime

7 index = find pos(fwd nodes[child.acc id], child)

8 fwd nodes[child.acc id].insert(index, child)

9 for each acc id do

10 max forwards = num idle accelerators[acc id]

11

12 while not fwd nodes[acc id].empty() do

13 node = fwd nodes[acc id].pop front()

14 index = find pos(ready queue[acc id], node)

15

16 if max forwards > 0 and is feasible(ready queue[acc id], node,

index) then

17 ready queue[acc id].push front(node)

18 node.is fwd = true

19 max forwards -= 1

20 update fwd metadata(finishing node, child)

21 else

22 ready queue[acc id].insert(index, node)

23 node.is fwd = false
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ensure that its laxity is more than the candidate node’s run time. That is, each of those

nodes can tolerate the additional latency of the candidate node without missing their

deadline. Since the queue is already sorted by laxity, we start at the head of the queue

and find the first node that is 1) itself not a forwarding node, and 2) has positive laxity.

If the node thus found has laxity greater than the candidate node’s runtime, then every

following node does too and the candidate node’s priority can be safely escalated. The

first condition here ensures that existing forwarding nodes do not prevent escalation

of other nodes, while the second is an optimization that lets us bypass negative laxity

nodes since they are not expected to meet their deadlines even without the promotion.

Algorithm 2: is feasible

1 Function is feasible(ready queue, fnode, index):

2 can forward = True;

3 for node ∈ ready queue do

4 if ready queue.index(node) == index then

5 break;

6 curr laxity = node.laxity - curTick();

7 if not node.is fwd and curr laxity > 0 then

8 can forward = curr laxity > fnode.runtime;

9 break;

10 if can forward then

11 for node ∈ ready queue do

12 if ready queue.index(node) == index then

13 break;

14 node.laxity -= fnode.runtime;

15 return can forward
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3.2.2 Execution time prediction

Since RELIEF and its feasibility check are laxity-driven, they require an estimate of

each node’s execution time. We accomplish that by predicting the compute time and

memory access time of each task separately.

Compute time prediction: The compute time of fixed-function accelerators, such

as the ones used in this study, is largely a function of the input size and the requested

computation, owing to the data-independent nature of their control flow [53]. The

compute time of such devices can, therefore, be profiled just once at either design time

or system boot-up since there will be very little variation. Our evaluation shows that

this scheme has an average error of just 0.03% (Section 3.4.6).

Memory time prediction: The memory access time prediction works by predicting

two values: the available bandwidth and the amount of data movement. For the former,

we experiment with three different predictors based on prior work [69]: Last value,

Average, which computes the arithmetic mean of the bandwidth of n previous tasks,

and Exponentially Weighted Moving Average (EWMA), that computes a weighted sum

of the most recently achieved bandwidth (bw) and historical data, as shown below:

predn = α× bw + (1− α)× predn−1(3.3)

The data movement predictor works by analyzing the graph and observing node

states. For predicting input data movement, we need to predict if a node can be colo-

cated with its parent, since colocations eliminate producer/consumer data movement.

Given that the scheduler performs colocations by tracking the previously executed node

on an accelerator, only one child can be colocated. We predict that the child with the

earliest deadline of a set of newly ready children will colocate with the parent if they

use the same accelerator type.

For predicting output data movement, we need to predict the number of forwards. If

all children can forward from the node, then we will not need to write results back to the
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main memory. This will be true if a) all the children map to a unique accelerator, and b)

all the children will be ready when the node finishes. The former is a simple comparison

between the number of tasks mapping to an accelerator type and the instances of that

type, while the latter is achieved by ensuring that the node is the latest finishing parent

based on its deadline.

The accuracy and performance of bandwidth predictors compared to a Max predic-

tion scheme, where the maximum available bandwidth is used, are presented in Sec-

tion 3.4.6. We also compare the data movement predictor to a Max prediction scheme

where maximum data movement is assumed.

3.2.3 System architecture

We present the system architecture that we assume in Figure 3.3. The accelerators

are modeled to directly access physical memory without address translation, like some

existing designs [200]. We propose exposing the entire scratchpad memory in each

accelerator to the rest of the system via a non-coherent read-only port. The newly ex-

posed scratchpad memories are not mapped to user address space and access is hidden

behind device drivers, ensuring secure access. We also use a discrete hardware man-

ager that is coherent with the CPUs (Section 3.1.2), responsible for scheduling nodes

onto accelerators as well as for orchestration of data movement between producers and

consumers.

The CPUs, the hardware manager, and the accelerators communicate via shared

main memory and interrupts. The CPU informs the hardware manager of new DAGs by

writing the root nodes into shared queues in the main memory. Each node is a structure

that represents a task for an accelerator, as shown in Table 3.3. The hardware manager

parses each node to push them onto ready queues, and launches them on the accelerators

via driver functions. The accelerators inform the manager of the completion of each

task by raising an interrupt. When a node completes, the manager updates its status
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Figure 3.3: System architecture depicting the hardware manager and the interconnect.

field to inform the host CPU program of its completion and pushes its children onto

ready queues if their dependencies are satisfied. The user program can learn of the

completion of an entire DAG by reading the status of leaf nodes.

The node structure contains a few more synchronization and bookkeeping fields

that we hide for brevity. The size of the structure depends on the number of parents

and children each node has, along with the pointer size. Assuming 32-bit pointers, the

base size of the structure with a single parent and child is 72 bytes, with each additional

parent and child adding 12 bytes and 4 bytes, respectively. The largest node we see in

our applications is 96 bytes. While we show the arrays to be of a constant size, this

implementation choice may be replaced with dynamic structures.

Forwarding mechanism

Exposing accelerator private scratchpad memories onto the system interconnect allows

consumer DMA engines to perform reads from producer scratchpads without having to

go to the main memory. Such a modification should be fairly straightforward in modern

SoCs [246], exposing the scratchpad memories to the system interconnect on the DMA

plane. This is what we assume in our evaluation. It also possible to leverage PCIe



47

Table 3.3: DAG node data structure

struct node

uint32 t acc id;

void *acc inputs[NUM INPUTS];

node *children[NUM CHILDREN];

node *parents[NUM INPUTS];

uint8 t status;

uint32 t deadline;

acc state *producer acc[NUM INPUTS];

uint32 t producer spm[NUM INPUTS];

uint32 t completed parents;

resizable-BAR support [8], which enables exposure of multiple gigabytes of private

accelerator memory into the CPU address space, and Linux P2PDMA interface [172,

240], which allows for direct DMA transfers between PCIe devices.

Hardware manager

We now detail the data structures maintained and runtime executed by the hardware

manager described in Section 3.1.2. We chose a microcontroller-based implementation

for our work since it offers sufficient performance (Section 3.4.7).

Manager data structures: The hardware manager maintains metadata for each accel-

erator to track its state and to manage synchronization of data between producers and

consumers. Table 3.4 presents the key metadata fields. In addition to maintaining the

address for accelerator and DMA engine MMRs (acc mmr and dma mmr), the meta-

data also holds the address of the scratchpad memory partitions (spm addr), the state

of the accelerator (status, e.g., idle or running), and the number of accelerators cur-

rently reading from each of its scratchpad partitions (ongoing reads). Scratchpad
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partitions are used to implement multi-buffering.

Table 3.4: Accelerator metadata

struct acc state

uint8 t *acc mmr;

uint8 t *dma mmr;

uint8 t *spm addr[NUM SPM PARTITIONS];

uint8 t status;

node *output[NUM SPM PARTITIONS];

uint32 t ongoing reads[NUM SPM PARTITIONS];

The scratchpad partition addresses are physical addresses used by consumer DMA

engines to perform direct data transfers. The field ongoing reads is used to keep

track of how many consumers are reading from a scratchpad partition of the accelerator

to avoid overwriting the data. The manager increments the count before a consumer

starts transferring the data to its local scratchpad memory and reduces the count after

it is done, thus ensuring that write-after-read dependencies are respected when data is

being forwarded.

The metadata size for each accelerator in our implementation, assuming 32-bit

pointers and a maximum of 3 scratchpad partitions (NUM SPM PARTITIONS), is 32

bytes, totaling to 236 bytes for the 7 accelerators our system simulates.

Manager runtime: Alongside launching tasks onto accelerators, the manager run-

time implements an interrupt service routine (ISR) and the scheduler. The ISR is trig-

gered every time an accelerator finishes a job, where a job could be a DMA operation

or computation.

Once an accelerator finishes execution and the scheduler is run, the field

output[p] (Table 3.4) is set to point to the node that just finished, denoting that

partition p holds the node’s output. The producer acc and producer spm fields
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are also set in the child nodes to inform their drivers of which producer accelerator

and partition to read from. When child nodes are launched, their driver checks if the

data is still present in the producer’s scratchpad and forwards it if it is. In addition, if

all the child nodes are not at the head of their respective ready queue (i.e., not next in

line for execution), or the parent node does not have any children, the runtime calls the

producer driver to write the results back to main memory immediately.

3.3 Evaluation Methodology

3.3.1 Benchmarks

We evaluate RELIEF against the four policies summarized in Section 3.1 using three

vision and two RNN applications. The five applications, along with their input size,

deadline, and laxity (when run alone), are listed in Table 3.5. We assume the vision

applications run at 60 frames per second (FPS) and thus use a deadline of 16.6 ms.

Deadline for RNN applications has been borrowed from previous work [299]. Input

sizes mirror prior work as well [57, 299]. Richardson-Lucy deblur is an iterative al-

gorithm where higher iterations lead to better picture quality. We use 5 iterations to

have a representative input size balanced with simulation time. Along similar lines, we

assume a sequence length of 8 for both LSTM and GRU.

Table 3.5: Vision and machine learning benchmarks

(Symbol) Benchmark Input / hidden layer size Deadline Laxity

(C) Canny edge detection [38] 128 x 128 16.6 ms 13.6 ms

(D) RL deblur [178, 234] 128 x128 16.6 ms 0.2 ms

(G) GRU [49] 128 7 ms 2.3 ms

(H) Harris corner detection [105] 128 x 128 16.6 ms 14 ms

(L) LSTM [114] 128 7 ms 3.6 ms
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3.3.2 Platform

We use gem5-SALAM [236] for our evaluation, which provides a cycle-accurate model

for accelerators described in high-level C. The simulator consumes the description of

an accelerator in LLVM [177] intermediate representation (IR) and a configuration file

and provides statistics like execution time and energy consumption. These accelerators

are then mapped into the simulated platform’s physical address space, enabling access

via memory-mapped registers. The simulated configuration, listed in Table 3.6, mod-

els a typical mobile device [196]. We model the hardware manager using an ARM

Cortex-A7 based microcontroller running bare-metal C code. Cortex-A7 has an area

and power overhead of 0.45mm2 and <100mW [23], which can be reduced further by

stripping the vector unit. The simulated platform models end-to-end execution of appli-

cations, from inserting the tasks into ready queues till the completion of each requested

application. This includes interrupt handling, scheduling, driver functionality, DMA

transfers, and accelerator execution. In addition to the bus-based interconnect between

the accelerators listed in Table 3.6, we evaluate RELIEF’s performance with a cross-

bar switch in Section 3.4.8. The two topologies represent two ends of the interconnect

cost/performance spectrum.

Table 3.6: Simulation setup

Hardware manager ARM Cortex-A7 based 1.6 GHz single-core in-order CPU

32 KB 2-way L1-I + 32 KB 4-way L1-D

64 B cache line size

Main memory LPDDR5-6400; 1 16-bit channel; 1 rank; BG mode

tCK = 1.25ns; burst length = 32

Peak bandwidth = 12.8 GB/s

Interconnect Full-duplex bus; width = 16 B

Peak bandwidth = 14.9 GB/s
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Our evaluation uses seven image processing accelerators, one each for the kernels

shown in Figure 3.1. Each accelerator was designed in isolation by determining the

energy×delay2 (ED2) product for the execution of a single task on the accelerator, while

varying the configuration in terms of the number of functional units and memory ports.

The configuration with the minimum ED2 was chosen for the design, similar to previous

work [236, 251]. In practice, we expect accelerators to work on the same input size to

allow for easy chaining and sharing of data by commonly used applications. Our accel-

erators, clocked at 1 GHz, thus, have enough scratchpad memory to work on 128x128

inputs along with double buffered output to avoid blocking on consumer accelerator

reads. The precise scratchpad memory sizes are listed in Table 3.1. For accelerators

with differing input sizes, the software runtime or the hardware manager can break

down tasks into smaller chunks, similar to accelerator composition in GAM+ [57].

3.3.3 System load

Combinations of the applications in Table 3.5 are often seen in real-world scenarios,

e.g., Canny+LSTM is used for lane detection in self driving cars [296]. Enumerating

all combinations of these applications, thus, helps us cover all their existing and poten-

tial future use cases. We experiment with four levels of contention to see how each of

the policies scale. Low contention is just a single application, medium contention is all

combinations of size 2, while high contention is all combinations of size 3. Increas-

ing contention represents reduced ability to meet deadlines, with combinations larger

than 3 meeting very few deadlines and thus not evaluated. In each of these scenarios,

each application is instantiated once and the simulation ends when the last applica-

tion finishes execution. The fourth level of contention, called continuous contention,

is a modification of high contention where each of the three applications are run in a

continuous loop to ensure each application experiences contention throughout its exe-

cution. We limit the execution time of each simulation to 50ms and report results for

finished tasks. Each application is represented with a symbol in the following figures,
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as listed in Table 3.5.

3.4 Results

3.4.1 Data forwards

Our primary design goal with RELIEF is producing more data forwards than SOTA

policies. We quantify this increase in Figure 3.4.

Observation 1: SOTA policies under-utilize forwarding mechanisms. In con-

trast, RELIEF consistently achieves >65% of all possible forwards, on average.

This is clear from Figure 3.4, which shows the percentage of total data forwards and

colocations, computed as the ratio of number of forwards/colocations to the total num-

ber of edges in the mix. We can see how SOTA policies’ obliviousness to data forward-

ing mechanisms leads to their under-utilization, achieving as little as 8% of all forwards

possible. In contrast, RELIEF improves over HetSched, the leading SOTA policy, by

nearly 1.2x on average under continuous contention.

We observe two trends across all three four of contention in Figure 3.4: 1) RNN

applications (GRU and LSTM) are the biggest contributors to colocations, and 2) ap-

plication mixes with more RNN applications achieve better forwarding with RELIEF

than others. The first observation is unsurprising given that all RNN tasks map onto a

single resource. For the second observation, we attribute the gains with RNN applica-

tions to the fact that they contain long, linear chains (up to 9 nodes) that have the same

structure and node deadlines. Having the same node deadlines means that deadline-

aware policies schedule each of those chains in a round-robin fashion, thus forfeiting

any forwarding opportunities. FCFS has a similar problem of being locality oblivious.

HetSched is able to achieve significantly more forwards than other baseline policies.

These gains stem primarily from HetSched’s ability to prioritize GRU’s critical path,

which happens to contain most of its forwards.
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Figure 3.4: Percent of total forwards and colocations, computed as the ratio of the total

number of forwards/colocations to the total number of edges in the mix.
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3.4.2 Data movement

To understand each policy’s data movement behavior, Figure 3.5 plots the percentage

of data transfers (in bytes) that materialize as main memory accesses, scratchpad-to-

scratchpad transfers, and colocations.

Observation 2: RELIEF reduces main memory traffic by up to 32% compared

to HetSched, under each level of contention. The average reduction compared to

HetSched rests at 10%, 14%, 16%, and 16%, for low, medium, high, and continuous

contention, respectively. This is a key result and highlights how simple changes to the

scheduler can yield significant reductions in memory traffic.

The percentage of forwards that materialize as colocations in a mix is a function of

its application composition. As explained before and evident from Figure 3.5a, all GRU

and LSTM forwards are colocations since these applications map to a single accelerator.

In contrast, the vision applications are more diverse in their resource needs and exhibit

a greater degree of scratchpad-to-scratchpad data movement. The behavior of single

applications impacts the behavior of entire mixes. Mixes CD, CH, and DH (medium

contention), for instance, have fewer colocations than other mixes. The same is true for

mix CDH (high/continuous contention).

The reduction in data movement traffic reduces energy consumption for both the

main memory and scratchpad memories. We quantify this reduction for the high con-

tention scenario in Figure 3.6.

Observation 3: RELIEF reduces main memory and scratchpad memory en-

ergy consumption by up to 18% and 8%, respectively, compared to HetSched

under high contention. The average main memory and scratchpad energy reduction

compared to HetSched is 7% and 4%, respectively. Forwards reduce main memory

traffic while colocations eliminate both main memory and scratchpad memory traffic.

While forwards cause an increase in scratchpad activity, colocations more than make

up for the increase. RELIEF has the same scratchpad energy consumption as LAX for
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Figure 3.5: Breakdown of data movement into main memory traffic (lower bars),

SPAD-to-SPAD traffic (upper bars), and colocations (empty space). Data is normal-

ized to total data movement when all loads and stores go to main memory.
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Figure 3.6: Total main memory and scratchpad memories’ energy consumption under

high contention using gem5-SALAM’s energy models.

CDH, for instance, but reduces it by 24% for CGL.

3.4.3 Accelerator utilization

Figure 3.7 shows accelerator utilization (or occupancy), defined as the sum, across all

accelerators, of the fraction of total execution time for which each accelerator was busy.

Accelerator occupancy provides a measure of degree of parallelism in each scenario.

Note that while the numerator is relatively constant under the low, medium, and high

contention scenarios, the denominator, which is total execution time, is impacted both

by the degree of computational parallelism and by the data movement cost resulting

from the use of each policy. For the continuous contention scenario, the denominator

remains constant, while the numerator is impacted by the number and type of nodes

executed, the data movement cost, and the degree of computational parallelism, all of

which vary by policy.

Observation 4: RELIEF improves accelerator utilization by up to 41%, com-

pared to LAX under high contention, with an average improvement of 4%.

HetSched, in turn, results in best case and average improvements of 41% and

5% relative to RELIEF, respectively. RELIEF’s improvements over LAX are a re-

sult of increased number of forwards, resulting in lower execution time. In its attempt

to increase forwards, RELIEF can sometimes hinder the progress of tasks whose chil-
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(d) Continuous contention

Figure 3.7: Accelerator occupancy is defined as ratio of the sum of total of all accel-

erators’ compute time to the the end-to-end system execution time, measured from the

initiation of all applications to the completion of the last application. Higher is better.
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dren map to different accelerators, resulting in a lower degree of parallelism. This is

especially evident in mixes CGL and GHL under continuous contention, where GRU

and LSTM tasks, all of which map to elem-matrix, get promoted frequently, lim-

iting the time they execute in parallel with the vision tasks, which utilize a variety

of accelerators. HetSched and LAX’s gains over RELIEF for these application mixes

are primarily attributed to RELIEF’s lower accelerator-level parallelism and increased

scheduling latency (Section 3.4.7).

While RELIEF’s promotions reduce the degree of parallelism on average relative to

HetSched, they do not cause unfairness. In fact, it is a fairer policy when compared to

LAX and HetSched, as we will see in Section 3.4.5.

3.4.4 Node deadlines met

RELIEF integrates a feasibility check (Section 3.2) that makes a best-effort to minimize

missed deadlines. To evaluate its efficacy, we compute the percentage of node deadlines

met in each application mix and present the results in Figure 3.8.

Observation 5: RELIEF meets up to 70% more node deadlines compared to

HetSched, under high contention, with an average improvement of 14%. More

importantly, RELIEF rarely reduces the number of deadlines met compared to SOTA.

This highlights the effectiveness of the feasibility check in throttling priority elevations

to prevent deadline violations.

The only instance where RELIEF performs worse than existing policies is in the

high contention mix CDH. We observe that GEDF-N and RELIEF prioritize Deblur

nodes over Canny and Harris nodes since the former have a lower deadline and laxity.

This causes nearly all of the Canny and Harris nodes to miss their deadlines. Fur-

thermore, not all Deblur nodes meet their deadlines either because of high contention.

HetSched has a similar story of prioritizing Deblur due to its longer critical path. LAX’s

ability to de-prioritize applications with negative laxity allows it to de-prioritize Deblur,
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Figure 3.8: Percent of node deadlines met.
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allowing all Canny and Harris nodes to make progress. FCFS does not suffer from this

problem either because it does not prioritize DAGs and nodes. GEDF-D has the same

schedule as FCFS given that all the DAGs in this mix have the same deadline. RELIEF

also performs worse than HetSched in DGL, but the latter achieves the gains by unfairly

slowing down LSTM. We will explore fairness in more detail in Section 3.4.5.

Continuous contention has a different setup compared to the other three scenarios,

as described in Section 3.3.3. Under continuous contention, each mix executes a differ-

ent number and type of nodes under different policies for a fixed period of time. In the

other three scenarios, each application in a given application mix runs to completion

and executes exactly once, so the number of nodes executed is constant across policies

with the execution time depending on the policy’s scheduling decisions. This different

simulation setup results in what looks like anomalous behavior of a higher percent-

age of deadlines met under continuous contention compared to high contention (e.g.,

CDG), but in reality they cannot be directly compared. This hints at a tradeoff between

deadlines met and fairness that we explore in the next section.

3.4.5 Quality-of-Service and Fairness

An important aspect of RELIEF’s design is fairness: increased forwards for one appli-

cation should not come at the cost of excessive slowdown for others. Figure 3.9a shows

a box plot of application slowdown in each mix under high contention. The figure also

shows the results for LL and RELIEF-LAX, a variant of RELIEF that integrates LAX’s

de-prioritization mechanism (Section 3.1.3). Figure 3.9b, meanwhile, plots the percent

of DAG deadlines met under high contention.

Figure 3.9a shows how RELIEF reduces maximum slowdown and variance by up to

17% and 93%, respectively, compared to HetSched. The latter meets the same or more

DAG deadlines across the board, however (Figure 3.9b). The two results highlight

a key tradeoff: HetSched meets more DAG deadlines by unfairly slowing down one
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Figure 3.9: Slowdown (a) and DAG deadlines met (b) under high contention.

application over another, as evident from its wider slowdown spread, while RELIEF

attempts to distribute slowdowns and allows each DAG to make progress commensurate

with its deadline. This tradeoff is made even more evident under continuous contention,

as shown in Figures 3.10a and 3.10b.

Observation 6: RELIEF improves fairness, reducing worst-case deadline vio-

lation and variance by up to 14% and 98%, respectively, compared to HetSched

under continuous contention. HetSched is able to meet more DAG deadlines (Fig-

ure 3.10b) and improve accelerator utilization (Section 3.4.3) by unfairly favoring some

applications over others. For instance, HetSched meets 10 DAG deadlines in DGL

while RELIEF meets 0, but it does so by slowing down one application (LSTM) by

22%. In contrast, every application suffers a slowdown of <7% under RELIEF , ac-

companied by a 98% reduction in variance.

We also see how LAX’s de-prioritization mechanism causes significant unfairness
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Infinite values represent starved applications.
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Figure 3.10: Slowdown (a) and DAG deadlines met (b) under continuous contention.

in mixes CGL, DGL, and GHL. In all three cases, the RNN applications start missing

deadlines early on due to contention and are de-prioritized by LAX and RELIEF-LAX

in favor of the vision applications, causing significant unfairness. This is especially

troublesome considering that they have lower deadlines compared to vision applications

(Table 3.5). In contrast, RELIEF allows the RNN applications to progress alongside the

vision applications, ensuring more deadlines are met while reducing unfairness.

LAX also has a starvation problem, as is made evident from Figure 3.10a and Ta-

ble 3.7. The table lists the number of completed DAG iterations for each application in

each continuous contention mix. We see how Deblur is starved in every mix it is in ex-

cept DGL. Deblur is extremely sensitive to queuing delays given its laxity of just 0.2ms

(Table 3.5). Combined with its linear task graph, this means that if even a single Deblur

node is delayed by more than 0.2ms, the node’s laxity will drop below 0 and it will get
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Table 3.7: Number of finished DAGs in each application mix under continuous con-

tention.

Policy C D G C D H C D L C G H C G L C H L D G H D G L D H L G H L

FCFS 8 1 11 4 0 4 8 1 8 5 11 5 11 3 4 5 5 8 1 11 5 2 3 4 1 5 8 3 7 4

GEDF-D 5 1 12 3 1 2 3 2 9 5 11 4 2 4 4 3 3 9 1 11 3 1 4 4 1 3 9 4 2 4

GEDF-N 4 2 11 2 1 2 3 2 8 4 11 4 2 4 4 3 3 8 1 11 3 1 4 4 1 3 8 4 2 4

LAX 5 0 11 5 0 5 3 0 8 4 11 4 12 3 4 3 3 8 0 11 4 3 3 4 0 3 8 3 7 4

RELIEF-LAX 8 1 11 4 0 4 8 1 8 5 11 5 11 3 4 5 5 8 1 11 5 2 3 4 1 5 8 3 7 4

LL 4 2 11 2 1 2 3 2 8 4 11 4 2 4 4 3 3 8 1 11 3 1 4 4 1 3 8 4 1 4

HetSched 6 1 14 2 1 2 6 1 10 6 14 5 6 7 5 6 5 10 1 14 3 3 7 5 1 3 10 7 3 5

RELIEF 5 1 14 2 1 2 5 2 12 5 14 5 2 6 6 5 4 12 1 14 3 2 6 6 1 3 12 6 2 6

deprioritized by LAX. This is precisely what happens when Deblur contends with other

vision applications for the convolution accelerator: if any node is launched on the

convolution accelerator while a Deblur node is waiting, the latter will be stalled for

at least 1.5ms (Table 3.2), causing starvation. This stalls any progress for Deblur until

the system has no other node to offload to the convolution accelerator. DGL does

not suffer from this problem because GRU and LSTM do not use the convolution

accelerator. FCFS also has 0 finished Deblur iterations in CDH, but our experiments

show that it is not starved; rather it is making slow progress.

3.4.6 Prediction accuracy

The feasibility check presented in Section 3.2 utilizes a predictor to estimate compute

and memory access times for accelerators. Table 3.8 presents the error in the compute

time, the data movement, and the different memory bandwidth predictors under high

contention, along with the latter’s impact on the number of forwards and node deadlines

met. We empirically chose n=15 for Average and α = 0.25 for EWMA for the best

accuracy.

Observation 7: Compute time prediction has a maximum error of just 0.03%.

This validates prior observations that compute time can be defined as a function of input

size and requested operation for fixed function accelerators [53].
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Table 3.8: Accuracy of compute time and data movement predictors, along with the

accuracy and performance of memory bandwidth predictors. Negative error values

represent underestimation of true value while positive error values represent overesti-

mation. The geometric mean uses absolute error values.

Mix
Compute Memory DM Memory BW error (%) Forwards Node deadlines met

error (%) error (%) Max Last Average EWMA Max Last Average EWMA Max Last Average EWMA

CDG 0.06 -0.95 -56.33 5.85 -1.24 1.1 139 138 138 139 136 136 136 136

CDH 0 -8.06 -59.03 -19.42 -3.95 -4.68 46 46 47 47 22 22 22 22

CDL -0.05 -0.88 -56.47 5.19 -1.27 2.02 155 155 155 155 160 160 160 160

CGH 0.1 -1.01 -55.7 7.13 -1.18 2.19 130 130 130 130 150 150 150 150

CGL 0.02 0.59 -55.39 11.23 0.42 4.37 230 230 232 231 257 255 254 252

CHL 0.05 -0.93 -56.63 5.93 -0.64 2.79 143 143 143 143 174 174 174 174

DGH 0.03 -3.14 -56.94 4.26 -1.33 0.96 142 142 142 142 142 142 142 142

DGL -0.02 -2.15 -55.5 8.95 -0.07 2.67 244 245 244 245 240 242 239 242

DHL 0 -3.33 -56.7 3.65 -1.36 1.31 156 156 157 157 166 166 166 166

GHL -0.05 -0.57 -55.41 11.13 0.09 3.06 237 238 239 238 263 261 260 258

Gmean 0.03 1.47 56.4 7.31 0.68 2.22 - - - - - - - -

Data movement prediction also works well, with an average error of 1.35%. Mem-

ory bandwidth predictors, meanwhile, exhibit a range of accuracies, with Average per-

forming the best both in terms of mean (0.68%) and maximum (3.95%) error. Their

accuracy has little to no impact on performance, however. We can see from Table 3.8

how each policy achieves essentially the same number of forwards and deadlines met.

To understand the incremental impact of data movement and memory bandwidth

predictors, Figure 3.11 plots the performance impact of the two predictors in isolation

and combined, normalized to having Max predictor for both. The bandwidth predictor

here is Average. We can see how little impact the accuracy of the predictor has on

RELIEF’s ability to meet deadlines. Their impact on forwards (not shown) is similar.

Observation 8: RELIEF does not benefit from dynamic memory time predic-

tion. Each application has several forwarding chains, which are contiguous sequence

of forwarding producers/consumers. The laxity calculation based on the memory time

prediction decides how these chains get broken up into sub-chains and interleaved.

We notice that the number of sub-chains produced by each predictor does not differ
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Figure 3.11: Impact of memory predictors on missed deadlines under high contention.

significantly, which is why they all achieve similar overall performance. Given this ob-

servation, we have used the baseline Max predictors for all our evaluations since they

offer the same performance for negligible overhead.

3.4.7 Scheduler execution time

The execution time of a scheduling policy is an important factor in choosing one, since a

better schedule may not offset the overhead of preparing the schedule itself. Figure 3.12

plots the average and tail latency of pushing a task into the ready queue for each policy

on a Cortex-A7 based microcontroller.
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Figure 3.12: Average (bars) and tail (lines) latency of the scheduler with different poli-

cies on a Cortex-A7 based microcontroller, under high contention.

Observation 9: RELIEF has higher overhead than existing policies, but is eas-

ily overlapped with accelerator execution. Looking at Figure 3.12 and Table 3.2,
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we can see that RELIEF’s modest scheduling overhead can be easily overlapped with

computation, minimizing its contribution to the critical path.

3.4.8 Impact of interconnect topology

A crossbar is a high-throughput switch allowing up to n × m concurrent transactions

for n requesters and m responders. This should benefit RELIEF since it permits con-

current transactions between independent producer/consumer pairs. Figure 3.13 shows

RELIEF’s sensitivity to the interconnect in terms of interconnect occupancy and the

total execution time, under high contention.
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Figure 3.13: RELIEF’s sensitivity to system interconnect under high contention. In-

terconnect occupancy is defined as the percentage of cycles for which the interconnect

had at least one transaction going through.

Observation 10: RELIEF reduces interconnect occupancy by up to 49% com-

pared to LAX, with an average reduction of 33%. It does not, however, bene-

fit from high-performance interconnects. RELIEF’s low interconnect occupancy

is a result of its reduction in data movement (Section 3.4.2) as well as a lack of

accelerator-level parallelism (Section 3.4.3). This indicates that these applications are

not interconnect-bound, an observation further supported by the fact that the average

queuing delay for the bus is less than a cycle (not shown). We expect applications
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with more varied resource needs and larger input sizes to benefit more from complex

interconnects.

3.5 Related Work

The general scheduling problem of running n tasks on m processors such that the run

time is minimized has been proven to be NP-complete [269]. Nevertheless, several

heuristics have been proposed along with optimal solutions for more constrained ver-

sions of the problem. This subsection discusses some of these solutions, both for tradi-

tional CPU/GPU systems as well as more heterogeneous and real-time systems.

GPU scheduling: Prior work in GPU scheduling has looked at co-scheduling

and distributing work across CPUs and GPUs to reduce synchronization and data-

movement overhead [98, 179]. PTask [237] optimizes for fairness and tries to reduce

data movement by scheduling child tasks onto the same device as the producer when

possible. Cilk [31] also implements a child-first scheduling policy that improves local-

ity but it optimizes primarily for improved hardware utilization. While being child-first,

both PTask and Cilk are deadline blind, rendering them unsuitable for real-time appli-

cations. Zahaf et al. [303] use an EDF policy to determine which device each node

should be mapped to (e.g., GPU, DSP) such that all DAG deadlines are met. Their

work can be extended by optimizing for better colocation using RELIEF.

Baymax [41] and Prophet [42] use online statistical and machine learning ap-

proaches, respectively, to predict whether an accelerator can be shared by user-facing

applications and throughput-oriented applications at the same time, without violating

the former’s QoS requirements. RELIEF can be extended with Baymax and Prophet to

efficiently utilize multi-tenant accelerators like GPUs.

Menychtas et al. [188] present a fair queuing-based scheme where the OS sam-

ples each process’ use of accelerators in fixed time quanta and throttles their access to

provide fairness.



68

Accelerator scheduling: Gao et al. [85] batch identical task DAGs across multiple

user-facing RNN applications together for simultaneous execution on a GPU, thereby

improving GPU utilization and reducing inference latency. PREMA [53] utilizes a

token-based scheduling policy for preemptive neural processing units (NPUs) that dis-

tributes tokens to each task based on its priority and the slowdown experienced due to

contention, balancing fairness with QoS. While both policies are QoS-aware, neither of

them optimize for data movement across multiple accelerators.

GAM+ [57] is a hardware manager that decomposes algorithms into accelerator

tasks and schedules them onto physical accelerator instances using a preemptive round-

robin policy. The hardware manager we used is based on GAM+. VIP [196] is an

accelerator virtualization framework that uses a hardware scheduler at each accelera-

tor to arbitrate among different applications’ tasks. The authors use an EDF scheme

where the FPS of the application serves as the deadline. Yeh et al. [299] propose

exposure of performance counters in GPUs that drives LAX, a non-preemptive least

laxity-based scheduling policy. HetSched [12] is another laxity-driven scheduling pol-

icy for autonomous vehicles that takes task criticality and placement into account. The

scheduling policies underlying these systems are used in our comparative evaluation in

Section 3.4.

Real-time scheduling: Optimal scheduling using a job-level fixed priority algo-

rithm is provably impossible [116], unless task release times, execution times, and

deadlines are known a priori [66]. Baruah presented optimal but NP-complete integer-

linear programming formulations [28] along with approximate linear-programming re-

laxations [29] for scheduling real-time tasks on heterogeneous multiprocessors. Previ-

ous work also exists on providing tighter bounds on the response time of the system

under both preemptive and non-preemptive variants of GEDF [241, 294]. These math-

ematically sound formulations provide strong performance guarantees but tend to be

infeasible in an online setting. RELIEF’s goal is to meet application-specified dead-

lines while minimizing data movement using a fast, online heuristic approach.
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3DSF [239] is a hierarchical scheduler for cloud clusters that integrates three sched-

ulers. The top layer avoids missed deadlines by using a least-laxity (LL) scheme to pri-

oritize deadline constraint jobs over regular ones when necessary, the middle layer min-

imizes data movement by queuing tasks on servers that have the most inputs available

locally, and the bottom layer allocates server resources to each running job proportional

to its requirements. Although locality aware, 3DSF has multiple optimization targets

that come with execution time overheads untenable for micro-second latency tasks.

3.6 Summary and Discussion

RELIEF (RElaxing Least-laxIty to Enable Forwarding) is an online least laxity-based

(LL-based) scheduling policy that exploits laxity to improve forwarding hardware uti-

lization by leveraging one application’s laxity to reduce data movement in another ap-

plication. RELIEF increases direct data transfers between producer/consumer accel-

erators by up to 50% compared to SOTA, lowering main memory traffic and energy

consumption by up to 32% and 18%, respectively. Simultaneously, RELIEF improves

QoS by meeting 14% more task deadlines on average, and improves fairness by re-

ducing the worst-case deadline violation by 14%. RELIEF integrates into existing ar-

chitectures with hardware forwarding mechanisms and a hardware manager, requiring

minimal software changes.

While we have demonstrated our ideas over LL-based scheduling, the techniques

can be applied over other laxity-based policies such as HetSched as well. LL and

HetSched differ in the manner in which laxity is distributed across nodes in a DAG, re-

sulting in scheduling differences in the baseline policies. LL does not distribute its lax-

ity, which means that each node has laxity equal to the current DAG laxity. HetSched,

meanwhile, attempts to distribute the laxity among nodes based on their contribution to

the critical-path execution time. With LL as a baseline policy, RELIEF has all of DAG’s

laxity at its disposal that it can choose to exploit whenever it sees fit. With HetSched
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as a baseline, however, the DAG’s laxity is distributed across the nodes, limiting the

number of promotions a node will allow. We are currently investigating the impact of

using HetSched’s laxity calculation in RELIEF. Our preliminary results indicate that

such a combination continues to offer significant data movement cost savings, poten-

tially increasing both forwards and deadlines met. We observe, however, that the choice

of laxity distribution presents a tradeoff between QoS and fairness.
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4 Concurrent PIM and Load/Store

Servicing in PIM-Enabled Memory

Modern applications, ranging from consumer mobile applications [33] to large server

workloads [75, 276], are becoming increasingly memory bound. While newer mem-

ory technologies like HBM [131, 139], GDDR6 [132], and HMC [100, 130] reduce

the memory bottleneck by offering wider links, increased parallelism, and improved

scalability [39], they still struggle to close the gap between processor and memory per-

formance, the so-called “memory wall” [110, 287].

Processing in-memory (PIM) [3, 84, 99, 108, 161, 195, 270] is a paradigm shift in

how we design our computers, dictating that compute be moved closer to data instead

of the other way around. PIM architectures place compute units close to/inside main

memory cells, minimizing data movement costs and achieving wide data parallelism.

A common mechanism to trigger computation on these compute units is by submitting

PIM requests, requests that resemble regular memory requests (henceforth called MEM

requests) but perform computation in-place rather than moving data to/from the host

processor. To handle this heterogeneity in request types, the memory controller needs

to switch between MEM mode and PIM mode to service requests of each type. This

switching adds a new dimension to memory controller scheduling that is distinct from

traditional architectures.

Though PIM-enabled memories can be paired with many host processors, GPUs
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Figure 4.1: PIM-enabled GPU architecture. Each HBM layer contains eight functional

units (FUs) that are shared by two banks each (fewer shown in figure for readability).

have emerged as a particularly attractive fit given their highly data-parallel architec-

ture [3, 108, 215]. Figure 4.1 shows an example PIM-enabled GPU architecture. Mod-

ern GPUs often utilize techniques like streams [13, 106, 205], multi-process service

(MPS) [207], and multi-instance GPU (MIG) [206] to execute multiple kernels con-

currently, allowing for improved utilization of the GPU’s resources. These techniques

enable simultaneous use of both GPU cores and PIM functional units (FUs) by allowing

for co-execution of traditional GPU kernels with kernels that submit PIM requests to the

main memory for computation [3, 215] (henceforth referred to as GPU and PIM kernels,

respectively), improving both resource utilization and application performance. Such

simultaneous use can be either collaborative, where both GPU and PIM kernels belong

to the same application (e.g., large language models [111, 212, 248], graphics [290],

and scientific computing [119]), or competitive, where two separate applications launch

kernels on the two resources [48]. In both cases, the resulting simultaneous use of mem-

ory by both GPU and PIM kernels raises an important question: how do we efficiently

route and schedule MEM and PIM requests to ensure fairness between co-executing

kernels while also maximizing system throughput?

To answer this question, we need to look at the two key resources that are shared by
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MEM and PIM requests: 1) the memory controller, and 2) the interconnect between the

GPU’s streaming multiprocessors (SMs) and the memory controllers. We first discuss

contention at the memory controller. Figure 4.1 shows how the memory controller

(MC) maintains separate queues for MEM and PIM requests, with an arbiter (Arb) to

switch between them. The switching policy has a direct impact on system efficiency

since switching modes: 1) requires the draining of in-flight requests, potentially caus-

ing bank idle time, and 2) can hurt locality since MEM and PIM requests often map

to different rows. These factors influence queueing delay and the rate at which each

request type is served, thereby directly affecting the performance of both GPU and

PIM kernels. Optimizing for both system throughput and application fairness is a hard

problem, since throughput favors infrequent switching while fairness favors frequent

switching. This requires the design of a smart switching policy that can balance the

two goals.

PIM kernels are optimized to fully utilize SM resources to send as many PIM re-

quests as possible. Since the memory controller may not be able to keep up with this

burst of requests under contention, PIM requests can quickly fill up the memory con-

troller queues and create backpressure in the interconnect, causing denial of service to

MEM requests. Not only can this stall the SMs executing GPU kernels, but also reduce

the memory controller’s visibility into the load/store stream and lead to poorer decision

making.

Motivated by these challenges, this chapter makes the following contributions:

• A comprehensive analysis and characterization of GPU/PIM co-execution on a

PIM-enabled GPU under 180 competitive scenarios and a GPT-3-like collabora-

tive scenario, focused on interconnect and memory controller bottlenecks. We

discover that PIM kernels can easily overwhelm the shared memory subsystem

by its high request injection rate, causing unfairness. Concurrently, inefficient

switching at the memory controller can further exacerbate fairness and through-

put bottlenecks.



74

• Evaluation of the efficacy of adding a separate virtual channel (VC) for PIM

requests to alleviate congestion at the interconnect. Our analysis shows that this

can improve the arrival rate of MEM requests at the memory controller by an

average of 2.87x for some memory controller scheduling policies, while adding

less than 5% area overheads.

• Design and evaluation of a novel memory controller scheduling policy, called

F3FS, that modifies FR-FCFS by adding an extra layer of arbitration to favor

current mode, but caps the number of each request type served to provide fairness.

The cap can be adjusted to provide fairness between competing applications or

reduce execution time for collaborating ones.

4.1 Background

4.1.1 PIM Architectures

Figure 4.1 presents an exemplar bank-level PIM architecture that integrates multiple

functional units (FUs) in each HBM layer, where each FU is shared between a pair

of banks. The microarchitecture of the PIM FUs is presented in Figure 4.2. Each

FU incorporates a SIMD ALU along with a local register file to store operands and

temporary values. The register file is DRAM word-wide, which is typically tens of

bytes (32 bytes in HBM). The SIMD ALU operates on a DRAM word, which can

include multiple data elements (e.g., 16 FP16 elements [108, 161]).

PIM kernels mapped to bank-level PIM architectures lay out data in row buffer-

sized chunks across multiple banks, processing them in parallel one DRAM word at a

time. Given the large datasets of the applications that PIM targets, this could result in

a large influx of requests in a very short period. In order to curb this injection rate and

provide higher command bandwidth, bank-level PIM architectures often implement a

separate PIM mode [108, 161, 163, 256]. Within PIM mode, a single PIM request is
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SIMD ALU

Register
File (RF)
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Figure 4.2: PIM functional unit (FU) microarchitecture. The SIMD ALU can imple-

ment generic math and logic operations and/or domain specific operations.

executed by all banks in a lock-step manner. The memory controller switches between

PIM and MEM modes, effectively choosing which of PIM queue and MEM queue

to service requests from (Figure 4.1). The PIM register file (RF) holds state across

MEM/PIM switch boundaries, allowing for PIM correctness.

4.1.2 PIM Programming

There are two broad PIM programming paradigms: 1) coarse-grained offloading, where

the application configures control registers in the memory controller that specify the

function to compute [48, 73], and 2) fine-grained offloading, where the application

issues special memory instructions that encode PIM operations (e.g., add), which are

scheduled by the memory controller [162, 256]. The fine-grained instructions look and

behave like non-temporal (i.e., non-cached) stores for the host core, and the model we

use in this chapter.

Figure 4.3 shows an example fine-grained PIM kernel that adds two vectors. The

vectors are laid out in separate rows and aligned to the row buffer size. The kernel first

loads n DRAM word-sized chunks of vector a into the PIM register file. The register file

contents are then added to vector b, performing a DRAM word-wide SIMD operation

and storing the sum into the register file. Finally, the register file contents are stored

into vector c.

The figure also exemplifies the block structure of PIM kernels, where blocks con-



76

load row a ➔ RF

add row b, RF ➔ RF

store RF ➔ row c

c[i] = a[i] + b[i]

load <row a, col 0> ➔ RF[0]
load <row a, col 1> ➔ RF[1]
...
load <row a, col n> ➔ RF[n]

add <row b, col 0>, RF[0] ➔ RF[0]
add <row b, col 1>, RF[1] ➔ RF[1]
...
add <row b, col n>, RF[n] ➔ RF[n]

store RF[0] ➔ <row c, col 0>
store RF[1] ➔ <row c, col 1>
...
store RF[n] ➔ <row c, col n>

PRE, ACT ROW B

PRE, ACT ROW C

Figure 4.3: Vector addition PIM kernel. PIM kernels have a block structure, where a

block consists of consecutive PIM operations to the same row. The size of the block is

usually a multiple of the register file (RF) size (n).

sist of consecutive PIM operations (e.g., load) to the same row and are separated by a

precharge and an activate. While instructions within blocks can be reordered, blocks

must be executed sequentially for correctness due to their dependencies. Such se-

quential ordering can be achieved on the host side by using special barriers (e.g., Or-

derlight [197], which prevents reordering at SM’s operand collector stage) and at the

memory controller by using a scheduling policy like first-come first-served. We use

this block structure to minimize MEM interference with PIM (Section 4.6.2).

4.1.3 Concurrent GPU Kernel Execution

Concurrent utilization of host and PIM cores is an effective way of maximizing hard-

ware utilization and application performance. Large language models (LLMs) exploit

parallelism by simultaneously computing on different fully connected layers on the host

and PIM [248] and by overlapping Query/Key/Value (QKV) generation on the host with

multi-head attention on PIM [111, 212]. Other domains, like graphics [290] and scien-

tific computing [119] also achieve performance and energy gains with such concurrent

execution.

While streams [13, 106, 205] can be used to launch concurrent requests from the
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same application, CUDA multi-process service (MPS) [207] allows for GPU resources

to be shared simultaneously by different host processes. Kernels from different pro-

cesses each have their own address space, but they share the GPU SMs, caches, and

memory bandwidth. Taking a step further, CUDA multi-instance GPU (MIG) [206]

adds the ability to physically partition GPU resources (including SMs, interconnect

links, memory capacity, and memory bandwidth) into several instances, essentially

creating several sub-GPUs that can be used by independent applications.

4.2 Evaluation Methodology

4.2.1 Simulator

We use a modified version of GPGPU-Sim [144] that implements a cycle-level all-

bank PIM execution model, closely based on commercial designs [161]. Table 4.1

summarizes key architectural parameters. The main memory incorporates a PIM FU for

a pair of banks, with each bank receiving 8 register file entries out of 16. The memory

controller is updated to incorporate separate MEM and PIM queues. PIM kernels,

implemented in CUDA following the ISA of the PIM architecture we model [161],

send PIM operations modeled as cache streaming (CS) stores1. We modified GPGPU-

Sim’s core model to ensure that CS stores bypass all caches and are sent to the main

memory directly.

4.2.2 Benchmarks

We evaluate on two application scenarios: competitive, where two separate applications

launch a GPU and PIM kernel, and collaborative, where the same application launches

both. The GPU and PIM kernels are launched concurrently using CUDA streams.

1https://docs.nvidia.com/cuda/parallel-thread-execution/index.html#

cache-operators

https://docs.nvidia.com/cuda/parallel-thread-execution/index.html#cache-operators
https://docs.nvidia.com/cuda/parallel-thread-execution/index.html#cache-operators
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Table 4.1: Simulation parameters

GPU Parameters

GPU Model: Nvidia Quadro GV100

Number of SMs: 80 Core Frequency: 1132 MHz

L1D Cache: 32 KB Shared Memory: 96 KB

L1I Cache: 128 KB L2 Cache: 6 MB

Memory Parameters

Memory Technology: HBM

Channels/Banks: 32/16 DRAM Frequency: 850 MHz

Bus Width: 16 B Burst Length: 2

MEM-Q/PIM-Q Size: 64 entries NoC buffer size: 512 entries

PIM FUs: 8/channel PIM RF Size: 16 entries

Timing Parame- tCCDs=1, tCCDl=2, tRRD=3, tRCD=12, tRP=12

ters (cycles): tRAS=28, tCL=12, tWL=2, tWR=10, tRTPL=3

Address Map RRRR.RRRRRRRR.RBBBCCCB.DDDDDCCC

(bits): Key: R=Row, B=Bank, C=Column, D=Channel

In order to facilitate PIM programming, we turned off pseudo-random I-poly [225]

mapping to channels in favor of a more regular scheme, listed in Table 4.1. PIM kernels

use the simplified mapping to map each warp to a single memory channel and each

thread within a warp to a single bank. This mapping ensures that requests to each PIM

unit are issued sequentially. We use Orderlight barriers [197] to prevent reordering of

requests within the SM. PIM kernels require eight SMs (total of 1024 threads, 4 warps

per SM) to maximize speedup, leaving 72 SMs for the GPU kernel.

Competitive: We borrow nine PIM-amenable kernels from prior work [197]2. Ta-

ble 4.2 lists the name and input size of each benchmark. These PIM kernels are run

concurrently with 20 Rodinia benchmarks [40]3 on the host GPU, giving us 180 unique

2STREAM-Triad was excluded because it has the same access pattern as STREAM-Add. Histogram

was excluded because only a small fraction is PIM-amenable.
3We do not evaluate leukocyte because the provided input file did not generate significant memory
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GPU/PIM kernel combinations. Input size for the GPU benchmarks, listed in Table 4.3,

is taken from prior work [128, 135]. Both PIM and GPU kernels are run continuously

in a loop until each kernel has run at least once. We report data for the first completed

run of each benchmark.

Table 4.2: PIM benchmarks

No. Benchmark Input size

P1 Stream Add

67M elements per vector

P2 Stream Copy

P3 Stream Daxpy

P4 Stream Scale

P5 BN Fwd
8M batches, with 8 elements each

P6 BN Bwd

P7 Fully connected Inputs = Outputs = 16, 262,144 batches

P8 KMeans 1,048,576 points, 32 features

P9 GRIM 8M bitvectors, 32 base pairs

Collaborative: We emulate the execution of a GPT-3-6.7B like large language

model (LLM) [35], overlapping the execution of QKV generation with multi-head at-

tention (MHA), similar to prior work [212]. To achieve this, we execute three GEMM

kernels in a series on the GPU (QKV generation) with the PIM executing GEMV and

softmax layers (MHA). The model uses a batch size of 128, sequence length of 1024,

and an embedding table of size 4096. We assume that the KV cache for each layer is

loaded on demand to keep the model memory footprint in check.

4.2.3 Metrics

Competitive: We compute the speedup of both the GPU and PIM kernels as the ratio

of their execution time when run alone on 80 SMs and 8 SMs, respectively, to their

traffic. hybridsort and particlefilter ran for too long. myocyte encountered a bug with

GPGPU-Sim.
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Table 4.3: GPU benchmarks

No. Benchmark Input size

G1 b+tree 1 million keys, 10000 bundled queries, a range search of 6000 bundled queries

with the range of each search 3000

G2 backprop 655360 input nodes

G3 bfs 1 million vertices

G4 cfd 97K elements

G5 dwt2d 1024x1024 images, forward 5/3 transform

G6 gaussian 2048x2048 matrix

G7 heartwall 656x744 video, 2 frames

G8 hotspot 2048x2048 data points, pyramid height=4, 2 iterations

G9 hotspot3D 512x512 data points, 8 layers, 10 iterations

G10 huffman 262144 elements

G11 kmeans 494020 points, 34 features

G12 lavaMD 1000 boxes

G13 lud 2048x2048 data points

G14 mummergpu Reference: 20K sequences, 71 characters; Query: 50K sequences, 25 charac-

ters

G15 nn 10000390 hurricanes across 10 files, 10 nearest neighbors

G16 nw 2048x2048 data points

G17 pathfinder 100000x100 grid, pyramid height=4

G18 srad v1 512x512 data points, 100 iterations, lambda=0.5

G19 srad v2 2048x2048 data points, 2 iterations, lambda=0.5

G20 streamcluster 65536 points, 256 dimensions, 10-20 centers, 1000 intermediate centers
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execution time when run under contention. We then use this speedup to evaluate each

scheduling policy across two key metrics: fairness and throughput. Fairness is defined

using Fairness Index [72] which quantifies the disparity between the individual GPU

and PIM kernel speedups. It is expressed as:

Fairness Index = min(
SpeedupPIM

SpeedupMEM
,

SpeedupMEM
SpeedupPIM

)(4.1)

Throughput is defined using System Throughput [72] which quantifies the kernel

execution rate of the system, measured as the sum of speedups of the GPU and PIM

kernels. This is a direct measure of concurrency and the rate at which the system can

service kernels.

Collaborative: The key metric in this scenario is the speedup of the concurrent

kernel execution relative to the serial execution of the kernels. We compare this speedup

to an ideal scenario where the total execution time is the execution time of the longer

running kernel when run alone, representing perfect overlap.

4.2.4 Memory Controller Scheduling Policies

We summarize below the baseline memory scheduling policies we evaluate. Note that

most of these policies were not designed for PIM architectures; we therefore explain

how they switch between PIM and MEM modes.

1. First-Come First-Served (FCFS): Executes requests in the order they arrive.

Switches modes according to the request type.

2. MEM-First: Always issues MEM requests, if there are any. Prior art has used

this policy before [48].

3. PIM-First: Always issues PIM requests, if there are any.
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4. First-Ready FCFS (FR-FCFS) [235]: Prioritizes row buffer hits over the oldest

request, switching modes if the oldest request is from a different mode at the time

of a row buffer conflict on all banks. Each bank maintains a conflict bit, which is

set when there is a row buffer conflict and the oldest request is from a different

mode. The bank then stalls until a mode switch occurs, which is performed after

every bank has set its conflict bit.

5. FR-FCFS-Cap: A fairer version of FR-FCFS that CAPs the number of row buffer

hits that bypass the oldest request [193].

6. Blacklisting Memory Scheduler (BLISS) [261]: Blacklists applications that issue

more than n requests consecutively under FR-FCFS. Then implements the fol-

lowing priority order: 1) non-blacklisted application first, 2) row buffer hit first,

3) oldest first. The blacklist is cleared every few thousand cycles. This mecha-

nism effectively deprioritizes high memory intensity applications.

7. First-Ready Round-Robin FCFS (FR-RR-FCFS) [137]: Modifies FR-FCFS to

improve fairness by cycling through modes on row buffer conflicts, effectively

implementing the following priority order: 1) row buffer hit first, 2) next mode

in round-robin order first, 3) oldest first within the current mode.

8. Gather & Issue (G&I) [162]: Switches to PIM when PIM queue occupancy

reaches a high watermark, then drains the queue until the occupancy falls below

a low watermark.

Each of the above described policies use FR-FCFS within MEM mode, except FCFS,

while PIM requests always execute in FCFS order to ensure correctness.
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4.3 Characterizing GPU/PIM Interference

In order to understand the performance impact of co-executing PIM and GPU kernels,

we first quantify each application type’s memory behavior. Figure 4.4 compares the

memory access characteristics of the Rodinia benchmark suite to the PIM kernels under

FR-FCFS policy, in terms of (a) interconnect request arrival rate, (b) DRAM request

arrival rate, (c) DRAM bank-level parallelism (BLP), and (d) DRAM row buffer hit-

rate (RBHR). The boxes represent the inter-quartile range for each metric, with the

middle line and whiskers representing the median and extremes, respectively. Request

arrival rates are measured in terms of total GPU cycles, while BLP is measured in

terms of active DRAM cycles, i.e., the average BLP while the DRAM is servicing at

least one request. Since PIM kernels only need eight SMs to fully saturate the memory

subsystem interface, we compare them to Rodinia kernels running on both 80 and 8

SMs (represented as GPU-80 and GPU-8, respectively).

PIM kernels have a 3.95x higher request arrival rate into the interconnect compared

to GPU-8, and is only 17.8% lower than GPU-80, on average. While regular memory

requests get filtered by the L2 cache, PIM requests are not, worsening the imbalance at

the memory controller. PIM request arrival rate at the memory controller is heavier than

both GPU-8 and GPU-80, on average, outpacing them by 8.33x and 2.07x, respectively.

Not only can MEM and PIM requests not be issued concurrently, but they

also exhibit very different memory access behavior. Figures 4.4c and 4.4d com-

pare the BLP and the RBHR of the GPU and PIM kernels. PIM kernels not

only execute on all banks at the same time (Figure 4.4c shows a single bar

at 16 for PIM kernels), but also exhibit high row buffer locality. Combined

with their high request arrival rate (Figure 4.4b), PIM kernels can severely af-

fect a co-executing application’s performance. Figure 4.5 compares the im-

pact of memory intensive GPU kernels and PIM kernels on co-executing kernels.
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Figure 4.4: Memory access characteristics of the Rodinia benchmark suite, running on

80 and 8 SMs, and the PIM kernels in terms of (a) interconnect request arrival rate, (b)

DRAM request arrival rate, (c) DRAM bank-level parallelism (BLP), and (d) DRAM

row buffer hit rate (RBHR). The high whiskers are labeled with the most intensive

kernel for that metric.
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Figure 4.5: Average speedup of

Rodinia benchmark suite when

running on 72 SMs and when

co-executing with four memory

intensive kernels.

The figure shows the average speedup of the Rodinia

benchmark suite running on 72 SMs, with the re-

maining 8 SMs occupied by one of G4, G6, G15,

G17, and P1. The four chosen GPU kernels are the

most memory intensive in terms of interconnect re-

quests (G4), DRAM requests (G15), BLP (G6), and

RBHR (G17) when running on 8 SMs (Figure 4.4c).

PIM kernels show very little variation across each

metric and so we picked P1. The speedup is normal-

ized to Rodinia benchmark suite running alone on 80

SMs. To separate the effects of memory contention

and reduced SM availability, the figure also presents the speedup of running the kernels

on 72 SMs without any contention. The figure shows how the benchmark suite slows

down by an average of 60% when co-executing with P1, compared to a worst-case

average slowdown of 30% when running with other Rodinia kernels.

4.4 Memory Access: Interconnect Bottlenecks

PIM kernels are optimized to maximize the utilization of PIM FUs by saturating the

memory subsystem. This leads to a very high request arrival rate for the duration of

the kernel’s execution that can deny service to co-executing applications (Figure 4.4a).

Figure 4.6a shows this scenario, where the PIM requests fill the interconnect→L2 and

L2→DRAM queues, denying service to GPU kernels. To quantify this degradation,

Figure 4.7a characterizes the request arrival rate of each GPU kernel under each mem-

ory scheduling policy, averaged across all PIM kernels. We present results for each

scheduling policy since the service rate of each policy determines how fast the PIM

requests are drained from the interconnect. Note that some applications experience an

increase in the arrival rate. This is because PIM interference increases MEM queuing
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delay, improving MEM RBHR and reducing GPU kernel’s overall execution time.

Interconnect

SM
MEM

SM
PIM

MCL2

PIM only

(a) PIM kernels have very high request arrival rates, causing congestion at the interconnect,

interconnect→L2, and L2→DRAM queues, and unfairly slowing down GPU kernels.

Interconnect

MEM

PIM

SM

SM L2 MC
PIM

MEMMEM

PIM

PIM only

MEM

PIM

(b) Separation of MEM (blue) and PIM (red) requests into separate virtual channels and queues

to minimize interference between them.

Figure 4.6: Comparison of the baseline memory subsystem (a) with our proposed

changes (b).

While throughput optimizing policies like FR-FCFS are able to sustain a higher

arrival rate for MEM requests than others, the degradation remains severe, with even

FR-FCFS suffering a 41% drop on average. A policy like MEM-First should, intu-

itively, perform well here, but its performance is limited by the fact that most MEM

requests are stalled behind PIM requests in the interconnect. This demonstrates that

even though the memory controller scheduling policy impacts interconnect congestion,

PIM kernels’ memory intensity necessitates changes to the interconnect architecture.

4.4.1 Separating MEM and PIM Virtual Channels

In order to alleviate the problem of congestion at the interconnect, we propose sepa-

rating MEM and PIM requests into separate queues all the way from the SMs to the

memory controller. Figure 4.6b illustrates this proposal. Memory requests entering the

interconnect from the SMs are split into two virtual channels (VCs), one each for MEM
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and PIM requests. These virtual channels empty into interconnect→L2 cache queues,

where MEM requests are picked up by the cache while PIM requests are forwarded to

the memory controller. Finally, the two request types also share the links between L2

cache and memory controllers, necessitating splitting of L2→DRAM queues as well.

Using separate VCs and queues ensures that the two request types do not interfere

until they reach the memory controller, preventing PIM requests from stalling MEM

requests. Furthermore, the system provides fairness at each link by switching between

the two queues in a round-robin fashion. The crossbar interconnect uses a modified

version of the iSlip algorithm [187] where the arbiter records the previous VC served

for each incoming link and switches to the other VC presuming there is traffic on it. The

efficacy of this solution is demonstrated in Figure 4.7b. We split existing interconnect

queues in half to add a PIM VC, keeping the total queue size in Figures 4.7a and

4.7b equal. While most policies experience an increase in the arrival rate, MEM-First

experiences the biggest jump, with its average degradation reducing from 68% to 9%

(2.87x improvement).

Adding virtual channels entails area and power costs, however. The VC allocator,

used for allocating output virtual channels to input virtual channels, grows quadrati-

cally in the number of ports and virtual channels [300]. Meanwhile, the number of

control wires to encode the VC information with each packet grows logarithmically.

Despite the significant asymptotic growth, additional VCs add modest area and power

overheads, especially if the queues are long and the routers are pipelined. Based on

the data from Yoon et al. (Figure 4(c) in [300]), a router based on 45nm technology

with 32 queue entries, 128-bit channels, and a clock speed of 1ns experiences ∼5%

increase in area when going from a single VC to two. Since our evaluated system is

based on a smaller process node (12nm), uses longer queues (512 entries), and runs at

a comparable clock speed (0.88ns), we expect the overheads to be even lower.
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4.5 Memory Utilization: Scheduling Bottlenecks

Past the interconnect queues, MEM and PIM requests again contend at the memory

controller. The memory controller needs a mode switching policy to switch between

MEM and PIM modes to serve requests of each type. The design of an efficient mode

switching policy is non-trivial, for two reasons. The first reason is the increase in

queuing delays. Since MEM and PIM requests cannot execute concurrently, each of

them suffers increased queueing delays while waiting for requests of the other type

to complete. However, each application has a different tolerance for queueing delays,

creating a fairness problem.

Legend
Row A

Row B

Bank 1

Bank 2
Row X Row Y

MEM→PIM PIM→MEM

Row C

Row B
Row X

PIM→MEM

PIM Request

MEM Request

Figure 4.8: Switching between MEM and PIM modes leads to loss in locality since the

two request types often map to different rows, as seen for requests mapping to Rows X

(PIM) and B (MEM). MEM→PIM switches also suffer from bank idle time, like Bank

1 in the figure, since MEM requests on different banks execute asynchronously.

The second difficulty is the non-trivial cost of switching, as depicted in Figure 4.8.

When the memory controller performs a MEM→PIM switch, all in-flight MEM re-

quests must be drained before any PIM request can be issued. Since each memory

bank services requests concurrently and independently, this leads to idle time for banks

that finish first (Bank 1 in Figure 4.8). In addition, both MEM→PIM and PIM→MEM

switches may cause reduced row buffer locality since the two types of requests often

map to different rows (Rows X and B in Figure 4.8).
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4.5.1 Competitive Co-execution

We first characterize the performance of the various memory controller scheduling poli-

cies that we listed in Section 4.2.4 under the competitive scenario, both with and with-

out separate MEM/PIM VCs. We label the two configurations as VC1 (Figure 4.6a)

and VC2 (Figure 4.6b). Figure 4.9 shows the fairness index and throughput for each

PIM kernel, averaged across all GPU kernels. Figure 4.10 presents the average (a) num-

ber of mode switches (normalized to FCFS), (b) number of additional MEM conflicts

per switch, and (c) latency of draining MEM queue per switch, across all combinations.

Figure 4.10a uses geometric mean, while 4.10b and 4.10c use arithmetic mean. The fig-

ures also include results for our proposed policy, which we will introduce and discuss

later in Section 4.6.

FCFS schedules memory requests in arrival order, resulting in frequent switches

(Figure 4.10a). As a result, both individual application performance and hardware uti-

lization can be compromised. While such switching helps fairness to a certain degree,

especially with the VC2 configuration, the lack of locality and parallelism awareness

hurts throughput.

MEM-First and PIM-First favor a single request type, with the potential for the

other request type to experience extreme unfairness or starvation: a fairness index of 0 is

common (Figure 4.9a). Most throughput gains often stem from a single application that

submits the request type favored by the policy (Figure 4.9b). Both policies also suffer

from frequent switching (Figure 4.10a) and high switch overheads (Figures 4.10b and

4.10c), particularly in the VC1 configuration.

FR-FCFS optimizes for locality by prioritizing row buffer hits over older requests.

Such a design introduces two sources of unfairness: 1) high row buffer locality, and 2)

high access frequency. Both characteristics are true of PIM kernels (Section 4.3), mean-

ing that FR-FCFS inherently favors PIM kernels. This is evident from Figure 4.9b,

where MEM speedup contributes as little as 35% to the overall speedup (P5/VC1,
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P6/VC1), with the average contribution at 41% and 45% with VC1 and VC2 configu-

rations, respectively. FR-FCFS-Cap solves the first unfairness issue by restricting the

number of row buffer hits that bypass older requests, improving fairness and provid-

ing starvation freedom with the VC2 configuration. The policy still, however, suffers

from the second source and can cause starvation with VC1 configuration (P3, P6). The

CAP, set empirically to 32, also introduces more switches (Figure 4.10a), which re-

duces throughput by 3.7% and 2.8%, on average, under VC1 and VC2, respectively,

compared to FR-FCFS.
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(a) Average number of mode switches, normalized to FCFS (VC1).
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(b) Additional MEM conflicts per switch.
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(c) MEM drain latency (in DRAM cycles) per switch.

Figure 4.10: Average number of mode switches (a) and MEM→PIM switch overheads

in terms of additional MEM conflicts (b) and the latency of draining the MEM queue

(c).
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BLISS builds upon FR-FCFS, but performs worse than it in both our key metrics.

Depending on its blacklist schedule, BLISS devolves into either one of MEM-First,

PIM-First, or FR-FCFS. Our analysis shows that it spends around 20%, 20%, and 60%

time in each of those states with a blacklist threshold of 4. Performing a sweep of the

blacklist threshold, we note that BLISS performs best with a lower threshold, indicating

its tendency to converge toward FR-FCFS.

G&I, while designed to be a MEM-friendly policy [162], heavily favors PIM re-

quests and even causes starvation with the VC2 configuration (Figure 4.9a, P5). Owing

to PIM kernels’ high request arrival rate, PIM requests cross the high threshold (set

to 56) very quickly and fall below the low threshold (set to 32) only when either: 1)

MEM requests create back pressure, or 2) the PIM kernel is nearing completion. VC2

mitigates interference at the interconnect, leading to starvation similar to MEM-First

and PIM-First.

FR-RR-FCFS is the fairest policy in our characterization, achieving average fair-

ness indices of 0.55 and 0.77 with VC1 and VC2 configurations, respectively. By

switching mode on row buffer conflicts, FR-RR-FCFS ensures that all co-executing

applications receive service and resolves the FCFS-inherent unfairness in FR-FCFS.

However, the policy is sill prone to favoring applications with high locality since only

row buffer conflicts switch the application being serviced. We see this in Figure 4.9b

with P4/VC2, where the PIM kernel’s (STREAM-Scale) high locality (99.6%) hurts

GPU kernels’ speedup and provides 60% of the throughput, on average.

4.5.2 Collaborative Co-execution

We next look at the collaborative scenario where all policies execute a decoder-only

LLM (Section 4.2). This scenario is different from the competitive scenario in that the

primary metric is total execution time, not fairness. Figure 4.11 presents the speedup

under each policy compared to sequential execution of the two kernels. Under VC1
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configuration, all policies struggle to achieve any speedup. The key problem here is that

QKV generation, running on GPU SMs, is the longer running of the two kernels, but

the PIM kernels produce significantly more traffic and restrict the time MEM requests

receive service. This allows a policy like G&I to work well. By favoring PIM requests,

G&I is able to drain the interconnect and reduce congestion, allowing MEM requests

to make progress. At the memory controller, MEM requests are issued once the MEM

queue fills up and prevents PIM requests from coming in. While PIM-First should

exhibit similar characteristics, it lags behind because of nearly double the number of

switches and 6x higher switching latency.
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Figure 4.11: LLM speedup for each policy with both a combined and separate VCs.

The speedup is normalized to sequential execution of QKV generation and multi-head

attention, while the Ideal represents the minimum of the two stages.

The results vary significantly in VC2 configuration. Since MEM and PIM requests

do not interfere at the interconnect, PIM-favoring policies like G&I perform very close

to sequential execution. MEM-First achieves a speedup >1 because it favors the slower

running kernel, but it still limits parallelism. FR-FCFS shines here because it is able to

maximize memory throughput, minimizing the overall execution time.
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4.6 First Mode-FR-FCFS (F3FS) - New and Improved

PIM-Aware Memory Access Scheduling

We propose a new memory controller scheduling policy, called First Mode-FR-FCFS

(shortened to F3FS), which attempts to improve both fairness and throughput. F3FS

adds a new arbitration stage in front of FR-FCFS that favors requests in the current

mode. That is, it implements the following priority order: 1) current mode first, 2)

row buffer hit first, 3) oldest first. Within MEM and PIM modes, the queues utilize

FR-FCFS and FCFS, respectively. By favoring requests in the current mode, F3FS im-

proves throughput by maximizing locality and minimizing the switching frequency. To

prevent one mode from starving another, F3FS also implements a CAP on the number

of requests serviced in the current mode that bypass an older request in the other mode.

Here, age is implemented as an incrementing ID assigned to each request as it enters

the memory controller.

While fairness is an important metric for competitive co-execution that favors equal

CAPs on MEM and PIM requests, collaborative co-execution may favor an unequal

split of resources that results in an overall lower execution time. To support this, F3FS

uses two CAPs, one each for MEM and PIM modes. In a collaborative scenario, the

application can favor one type of kernel by setting a higher CAP value for it than the

other. These asymmetric CAPs can also be configured by system software to enforce

process priorities in competitive scenarios. We leave an exploration of the latter to

future work.

4.6.1 Hardware Implementation

Figure 4.12 presents the architecture of the mode switch logic. In particular, the figure

highlights the additions, deletions, and modifications for F3FS compared to the FR-

FCFS switching policy. While F3FS introduces additional comparators and structures
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for counting the number of bypasses, it also gets rid of the per-bank conflict tracking

that FR-FCFS performs. Such tracking goes beyond just maintaining a single bit for

each bank and implementing the AND circuitry: for instance, the logic needs to track

whether every bank has had at least one request issued before marking the next request

as a conflict.

LegendMode Switch Logic

Count +1

>?
Oldest
PIM age
Oldest
MEM ageM

U
X

MEM Cap

PIM Cap
>=? M

U
X

Bank conflict?

1 0 1 1 0 1 0

Current
mode

empty?

Mode

Mode Deletions

Additions

Modifications

Figure 4.12: Hardware overheads of F3FS in terms of the mode switch logic complex-

ity, compared to FR-FCFS.

In order to quantify the area overheads of F3FS over FR-FCFS, we synthesized their

mode switching logic on an AMD XCZU5EV FPGA [15] using Vitis HLS [14]. The

synthesis reveals that F3FS requires 275/143 LUTs/flip-flops, compared to 377/88 for

FR-FCFS.

4.6.2 Evaluation

We compare F3FS with the baseline policies under both the VC1 and VC2 configura-

tions. First, we look at competitive co-execution, where we use the same CAP (empir-

ically set to 256) for both MEM and PIM to promote fairness. This CAP, determined

from a sensitivity study, is strategically set to a multiple of the PIM RF size (eight per

bank) to exploit the block structure of PIM kernels (Section 4.1.2). Figure 4.9 shows

the fairness and throughput improvements.

Competitive co-execution: F3FS performs the same or better than the best per-

forming state-of-the-art policies in both VC1 and VC2 configurations. Under VC1
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configuration, F3FS provides fairness comparable to FR-RR-FCFS, while achieving

1.8% and 5.1% higher average throughput compared to FR-FCFS and FR-RR-FCFS,

respectively. This is a direct result of F3FS switching less frequently (Figure 4.10a)

while paying comparable costs per switch (Figures 4.10b and 4.10c). Meanwhile,

under VC2 configuration, F3FS outperforms FR-RR-FCFS in terms of both fairness

and throughput by 4.7% and 2.6%, respectively, on average. This is a key result that

highlights the throughput benefits of favoring current mode and fairness benefits of

capping the wait time of each mode. Beyond averages, F3FS improves the worst-

case fairness/throughput by 76.76%/28.98% under VC1 and by 146.22%/29.84% un-

der VC2, respectively, compared to FR-RR-FCFS. Combining F3FS with our proposed

interconnect changes yields average and best case fairness/throughput improvements

of 48%/13% and 72%/22%, respectively, compared to a baseline single VC intercon-

nect and FR-RR-FCFS policy. These improvements highlight how F3FS enhances the

feasibility of concurrent host/PIM execution.

In order to evaluate how extremes in the memory intensity of the GPU kernels af-

fects the performance of F3FS in a competitive scenario, Figure 4.13 shows the average

fairness and throughput when a PIM kernel is executed with a compute intensive kernel

(G10) or one of four of the most memory intensive Rodinia kernels (G6, G11, G17,

G19), averaged across all PIM kernels (an orthogonal slice of Figure 4.9). The memory

intensive kernels are picked based on our characterization in Figure 4.4. With the com-

pute intensive kernel G10, there is very little variation in both fairness and throughput

across scheduling policies and interconnect configurations, highlighting such applica-

tions’ tolerance for memory access delays. Memory intensive kernels have more varied

results. F3FS works well with G19, where interconnect traffic is high, but is filtered by

the L2 cache, and is indicative of the common case of moderate memory traffic. F3FS

is able to equalize queuing delays for MEM and PIM requests by using a symmetric

CAP, while maintaining long enough phases to achieve BLP and RBHR comparable

to standalone execution and minimize switching overheads. With G6 and G11, F3FS
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Figure 4.13: Fairness (a) and throughput (b) of a compute intensive (G10) and four

memory intensive (G6, G11, G17, G19) Rodinia kernels, averaged across all PIM ker-

nels.

unfairly favors GPU kernels due to long MEM phases. G6 achieves higher BLP with

F3FS than other policies, elongating the MEM drain latency per MEM→PIM switch.

G6 also has long MEM phases because of its poor locality (average RBHR of 32%).

F3FS, by equalizing the number of MEM and PIM requests served, inadvertantly leads

to longer MEM phases because MEM requests take longer than PIM requests, on av-

erage. G11’s high MEM request arrival rate ensures that MEM requests frequently

execute up to the CAP. Even when the CAP is reached, the high MEM arrival rate of-

ten results in staying in MEM mode due the oldest request at the memory controller

continuing to be MEM. G17’s high RBHR results in smaller MEM phases, resulting

in unfairly high PIM speedup due to the application’s sensitivity to prolonged MEM

queuing delays resulting from a PIM CAP of 256.
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Collaborative co-execution: Figure 4.11 presents the speedup of the LLM under

each policy. This is where F3FS’s asymmetric CAP comes into play. We configure

F3FS to use MEM/PIM CAPs of 256/128 and 64/64 in VC1 and VC2 configurations,

respectively, based on a sensitivity study. Setting the asymmetric CAPs is a balancing

act since throughput favors high CAPs while fairness favors lower ones. Starting with

high values, the asymmetric CAP under VC1 configuration is lowered based on two

principles: 1) a high enough PIM CAP to ensure consistent influx of MEM requests

into the memory controller, and 2) a high enough MEM CAP to service as many MEM

requests as possible without starving PIM requests. While this asymmetry helps in the

VC1 configuration, VC2 configuration favors a symmetric CAP. To understand this,

we discuss the MEM and PIM CAPs separately. For MEM CAP, increasing the value

beyond 64 did not help since only 8% of MEM→PIM switches were triggered due to

the CAP being exceeded. Meanwhile, for the PIM CAP, lowering the value below 64

had two implications: 1) increased switch overheads, and 2) fewer MEM requests in the

MEM queue at the end of a PIM phase, reducing the memory controller’s visibility into

the GPU kernel’s memory access stream and hurting locality. The chosen parameters

allow F3FS to match the best performing policies in both the configurations (G&I in

VC1 and FR-FCFS in VC2). Compared to FR-RR-FCFS, F3FS improves speedup by

11.23% and 7.37% in VC1 and VC2, respectively. These results highlight the flexibility

of F3FS, showing how it can be dynamically configured to an application’s needs.

4.6.3 Discussion

Ablation study: In order to better understand F3FS’s performance improvements, we

study the impact of its three components that differ from FR-FCFS-Cap: 1) CAP on

the number of requests serviced in current mode (vs. row buffer hits), 2) prioritizing

current mode first, and 3) the ability to use asymmetric CAPs on MEM and PIM modes.

Figure 4.14a shows the incremental performance impact of the three components under

VC2 configuration for P2 (averaged across all GPU kernels, except kmeans since it
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starves with FR-FCFS-Cap) and the LLM. The CAP for each stage is set separately to

maximize competitive performance, and is listed in the figure. Moving the CAP from

limiting row buffer hits to limiting requests in the current mode improves the average

fairness index from 0.73 to 0.8 for P2, while reducing the LLM speedup by 4%. Next,

favoring current mode brings about throughput improvements by reducing the number

of switches, while still maintaining nearly the same fairness index. The LLM, on the

other hand, drops to a speedup of 1.04. Finally, the last bar demonstrates the impact

of asymmetric CAPs (MEM/PIM CAPs of 256/128 respectively to prioritize the slower

MEM kernel). Asymmetry negatively impacts fairness in a competitive scenario, but

benefits the LLM by reducing the queuing delay for MEM requests, improving speedup

by 10% and pushing it higher than that of FR-FCFS-Cap.
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Figure 4.14: (a) Impact of F3FS components on fairness index (FI) and system through-

put (ST) of P2 and speedup of the LLM. The shaded and non-shaded ST regions rep-

resent MEM and PIM speedups, respectively. (b) Sensitivity of F3FS to interconnect

queue size under VC2 configuration in terms of FI and ST across all GPU/PIM combi-

nations.

Sensitivity to interconnect queue size: Figure 4.14b shows the performance sen-

sitivity of F3FS to the interconnect queue size. The queue size is varied from half (256)

to double (1024) the baseline size of 512. The figure shows how F3FS is largely agnos-

tic to the queue size itself and neither benefits from longer nor is impeded by shorter
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queues.

4.7 Related Work

PIM integration: UM-PIM [309] is a hardware/software memory management

scheme that optimizes accesses to PIM-enabled memory and traditional memory for lo-

cality and bandwidth, respectively. PIM-MMU [160] optimizes data transfers between

PIM-enabled and traditional memory by using a dedicated Data Copy Engine that incor-

porates a PIM-aware memory scheduling policy. Like UM-PIM, PIM-MMU also uses

separate optimized memory mapping schemes for each memory type. PyPIM [165]

is an end-to-end programming framework for memristive PIM [54, 260] that incor-

porates a PIM ISA, a host driver, and a Python development library, along with a

GPU-accelerated PIM simulator for testing and validation. PIM-Enabled Instructions

(PEI) [7] is a locality-aware PIM offloading framework that utilizes ISA extensions to

program an in-core PEI Computation Unit (PCU). The PCU executes the instructions

either locally or on PIM based on the locality of its input operands. GraphPIM [198] is

another PIM offloading framework designed for graph workloads. GraphPIM works by

offloading atomic instructions that access an uncacheable PIM memory space to PIM

units.

Memory controller scheduling: Memory request scheduling for CPUs in multi-

application scenarios is a well-studied problem [147, 148, 193, 194, 261]. STFM [193]

equalizes memory-related slowdowns across competing threads by tracking the L2 stall

times for each competing thread. PAR-BS [194] optimizes for fairness by scheduling

at batch granularity and limiting the number of requests from each thread in a batch.

TCM [148] also targets fairness by separating latency sensitive and bandwidth sensi-

tive threads based on their LLC misses per kilo instructions, prioritizing the former

over latter. STFM [193], PAR-BS [194], and TCM [148] optimize for fairness among

threads, but require expensive state maintenance and communication that is untenable
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for GPUs. The latter two are also known to be too complex and slow for modern high

speed memories [261]. ATLAS [147] is a throughput-optimizing policy that forms a

total order of threads based on traffic from all memory controllers, prioritizing threads

that have attained the least service. Like the previous three, ATLAS suffers from high

complexity. ITS and WEIS [138] are instruction throughput and weighted speedup op-

timizing policies that utilize LLC misses per kilo instructions and DRAM bandwidth,

respectively, to prioritize applications. Both would devolve into MEM/PIM-First de-

pending on their priority order. DASH [271] is a memory scheduler for accelerator-rich

systems that provides quality-of-service to hardware accelerators executing real-time

applications while ensuring CPU applications make progress whenever possible.

SMS [27] is a memory scheduling policy for shared DRAM CPU/GPU systems,

where GPUs are often significantly more memory intensive than CPUs. While SMS

works in the presented context, its batch granularity scheduling makes it unsuitable for

concurrent host/PIM accesses. In particular, CPU/GPU batches that map to different

banks can be serviced in parallel, but host/PIM batches can not. SMS does not take

this exclusivity in account. G&I [162] is also a PIM-aware policy for bank-level PIM

architectures. Our evaluation shows how the policy is PIM-biased and is outperformed

by F3FS.

Host/PIM concurrency: LLMs can leverage host/PIM concurrency by overlap-

ping QKV generation and MHA on host and PIM, respectively (NeuPIMs [111], At-

tAc! [212]) or by distributing fully connected layers between host and PIM at a head

granularity (IANUS [248]). While AttAc! and IANUS take care to not submit MEM

and PIM requests simultaneously, NeuPIMs proposes a dual row buffer architecture,

one each for serving MEM and PIM requests. F3FS makes none of these assump-

tions and can be tuned based on application characteristics. Pimacolaba [119] proposes

software and hardware optimization to parallelize Fast Fourier Transforms across GPU

SMs and PIM FUs. Chopim [48] optimizes data layout and mapping to main memory,

along with OS page coloring, to reduce PIM/host access interference and maximize
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main memory utilization. Pattnaik et al. [215] combine a GPU vs. PIM affinity model

with a dynamic execution time prediction model to dispatch GPU kernels to GPU cores

or PIM FUs, with the goal of minimizing overall execution time. Most application

scheduling and memory management schemes can be combined with our proposals to

improve system utilization.

4.8 Summary

Integrating PIM-enabled main memories into existing systems remains an open chal-

lenge. In this chapter, we show how the sharing of the interconnect and main memory

controller by MEMory and PIM requests can severely degrade application-level fair-

ness and system-level throughput. The memory intense nature of PIM kernels can

overwhelm the memory controller under contention and create back pressure in the

interconnect, hurting any co-executing application’s memory performance. Our char-

acterization of a GPU/PIM system shows that such contention causes MEM request

arrival rate at the memory controller to drop by up to 95%. We propose a two-step

solution to remedy this. First, we modify the interconnect and add a separate virtual

channel (VC) for PIM requests to mitigate MEM/PIM interference. Second, we in-

troduce a new memory controller scheduling policy, called F3FS, that improves: 1)

fairness, by providing equal service to the two request types, and 2) throughput, by

minimizing MEM/PIM mode switching frequency. When evaluated on 180 compet-

ing GPU/PIM kernel combinations, our solution achieved up to 72% and 22% better

fairness and throughput, respectively, compared to FR-RR-FCFS policy with a single

VC. F3FS is also tunable at runtime and can be configured to favor one request type

over another, allowing a GPT-3 like LLM to execute 13.14% faster when compared

to the same baseline. Beyond performance averages, F3FS also improves worst-case

throughput and fairness metrics, enhancing the feasibility of GPU/PIM co-execution.
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5 On The Impact of Emerging

Heterogeneous Memory on

Accelerator Performance

The memory footprint of modern applications like large language models (LLMs) con-

tinues to grow at a staggering rate, with model parameter size increasing by 410x every

two years [87]. The growth in size and complexity has led to the wide proliferation of

AI-enabled applications, from chat bots [238] and coding assistants [77] to impacting

“literature and medicine” [36].

While massively parallel processors like GPUs continue to underpin the devel-

opment of LLMs, their compute capacity remains underutilized [87, 142, 213] with

memory capacity emerging as the key bottleneck. The challenge of accommodat-

ing these models in memory brings a long known problem to the forefront, that of

DRAM capacity scaling [192]. Emerging memory technologies like phase change

memory (PCM) [221], resistive RAM (ReRAM) [45], and spin-transfer torque RAM

(STT-RAM) [19, 158, 223, 255] improve density compared to traditional DRAM while

achieving varying degrees of performance parity. Concurrently, interconnect technolo-

gies like compute express link (CXL) [60] allow for technology-agnostic expansion of

main memory capacity and direct access from accelerators like GPUs [22, 91]. The per-

formance impact of these technologies on accelerator performance is of considerable
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importance but heavily understudied. This work aims to fill that gap, contributing to a

broad category of solutions that attempt to transparently expand GPU memory capacity

while hiding the associated performance costs.

In this chapter, we characterize the performance impact of heterogeneous host mem-

ory on accelerator performance using an Intel Optane and Nvidia A100 equipped sys-

tem. We first present basic bandwidth measurements when moving data between host

and GPU under different host memory configurations, showing how host to GPU and

GPU to host bandwidth drop by up to 41% and 92%, respectively, compared to tra-

ditional DRAM memory. Prior work has shown that CXL-expanded memory only

achieves up to 47% and 30% of the theoretical maximum bandwidth of the underlying

DRAM memory [262], while highlighting significant performance variations across

CXL controller architectures and the underlying memory technology.

To understand the real world impact of this performance deficit, we evaluate the in-

ference performance of the open pre-trained transformer (OPT) family of LLMs [308]

under various memory configurations using FlexGen [254], a state-of-the-art LLM

serving framework that supports distribution of model weights across GPU memory,

host memory, and permanent storage. Our results show an average 33% increase in

per-layer processing time for OPT-175B with Optane as main memory compared to

DRAM main memory, a direct result of the lower Optane bandwidth and the memory

bound nature of LLM inference. While compression helps reduce this memory bot-

tleneck, a deeper analysis of FlexGen’s compute schedule reveals an imbalance in the

compute/communication pipeline as the root cause. This imbalance is a byproduct of

its weight placement scheme.

We address the imbalance with two alternate weight placement schemes, one each

optimizing for latency and throughput. The first scheme, called HeLM, allocates

weights for each layer in a compute time-aware fashion to improve the overlap of com-

pute time of layer i with the weight transfer time of layer i+1. This allows HeLM to

achieve a more balanced compute/communication pipeline, improving average time be-
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tween tokens (TBT) by 27%. The second scheme, called All-CPU, offloads all weights

to host memory and leaves GPU memory for key/value caches and hidden state. This

boosts the maximum possible batch size from 8 to 44 and brings about a 5x improve-

ment in throughput. HeLM’s TBT and All-CPU’s throughput come within 9% and 6%

of an all-DRAM system, highlighting how careful data placement can help hide the

performance deficiencies of emerging memory technologies.

In summary, this chapter makes the following contributions:

1. Quantification of host/device data movement performance with Intel Optane, a

high capacity but low performance byte-addressable memory, as host memory,

showing significantly lower bandwidth compared to traditional DRAM.

2. Characterization of LLM performance on a real system when using such memory,

pointing at inefficient weight placement as a performance bottleneck.

3. Evaluation of two model weight placement schemes that optimize for latency and

throughput, performing within 9% and 6% of an all-DRAM system, respectively.

4. Performance projections on to CXL-enabled memory, highlighting efficacy of the

proposed policies across a range of memory performance characteristics.

5.1 Background

5.1.1 LLM Servers

Given the exponential growth in LLM model sizes, storing all model weights on ac-

celerator memory has been increasingly challenging [87]. In response, several LLM

frameworks have been proposed that enable offloading parts of the model to host mem-

ory or a backing store like disks. FlexGen [254] is one such framework that distributes

model weights, KV cache, and hidden state between GPU memory, host main memory,
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and storage, and employs a ”zig-zag” compute schedule on the GPU that optimizes

for throughput and weight reuse. The compute schedule overlaps the computation of

a batch of requests on layer j (e.g., MHA) with the loading of layer j+1 (e.g., FFN)

and its associated KV cache onto the GPU. Listing 5.1 shows FlexGen’s computation

schedule. Our characterization focuses on the overlap of compute with weight transfer

given that the model weights are often at least an order of magnitude larger than both

the KV cache and the hidden state.

Some LLM serving frameworks like llama.cpp [86], PowerInfer [258], and

PowerInfer-2 [292] support concurrent CPU/GPU computation to avoid weight trans-

fer bottlenecks. Among these servers, only PowerInfer-2 supports offloading to GPU

memory, host memory, and storage. However, PowerInfer-2 is not open source. We

therefore use FlexGen running on GPUs for our evaluation.

Listing 5.1: FlexGen computation schedule

1 for i in range(execute_gen_len):

2 for j in range(num_layers):

3 load_weight(i, j+1)

4 compute_layer(i, j)

5 sync()

llama.cpp [86] partitions model layers between the CPU and GPU, processing re-

spective layers locally (model parallelism) and moving activations across whenever

needed. LLM in a flash [10] improves inference latency on mobile devices by maxi-

mizing the reuse of weights loaded from flash memory into DRAM, and by optimizing

weight layout in flash memory to improve access bandwidth. PowerInfer [258] exploits

the power-law distribution of model weights, extracted from offline profiling, to dis-

tribute them across host and GPU memory. This allows the CPU and GPU to compute

on sparse and dense matrices, respectively, in parallel. PowerInfer-2 [292] further opti-

mizes inference for mobile devices by offloading dense and sparse computations on the

NPU and CPUs, respectively, alongside optimizing I/O operations to enable streaming
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of weights from flash memory.

Among the presented servers, only FlexGen and PowerInfer-2 support offloading to

GPU memory, host memory, and storage. However, PowerInfer-2 is not open source

and we, therefore, use FlexGen for our evaluation.

5.1.2 Emerging Memory Technologies

Section 2.3 provides a detailed background on Intel Optane and Compute Express Link.

This section summarizes some of their key features relevant to this work.

Intel Optane is a PCM-based byte-addressable non-volatile memory that offers sig-

nificantly more density than traditional DRAM technology [121, 50]. While Optane

fits into regular DDR4 slots and can be used accessed using regular loads/stores, it pro-

vides significantly lower performance. Prior work has shown Optane achieves nearly

2.5x lower sequential read bandwidth compared to DRAM and about 6x lower write

bandwidth [129, 218, 293]. Being PCM-based also limits the life of each memory

module in terms of its write endurance [121].

Compute Express Link (CXL) [60] was announced in 2019 [37] as an industry-

standard interconnect technology to connect processors, devices, and memory ex-

panders over PCIe bus interface. Of particular note is CXL’s ability to allow for co-

herent expansion of main memory capacity over PCIe. By providing load/store seman-

tics similar to traditional main memory, CXL memory provides transparent expansion

of main memory without the limitations of traditional DDR interfaces. Moreover, the

memory technology across the interconnect is not bound to be DRAM, allowing for use

of high density media like SSDs [125, 140, 216, 243, 295] or even Optane itself [125].

This ensures broader applicability of findings presented in this chapter, especially in

light of the discontinuation of Intel Optane [124].

While the performance of CXL memory is largely determined by the backing mem-

ory technology, communication over PCIe does provide an upper bound. CXL adds at
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least 70 nanoseconds to the round-trip latency [252], not accounting for contention at

the expander. The achievable bandwidth is also limited to 64 GB/s for the latest PCIe

5.0 x16 link [284]. In comparison, our DDR4-based evaluation system achieves 157

GB/s across 8 memory channels (Section 5.2.1).

5.2 Evaluation Methodology

5.2.1 Platform

We perform our evaluation on an Intel Optane-equipped dual-socket machine. The

configuration is listed in Table 5.1. Each socket has 4 memory controllers with 32 GB

DDR4-2933 DRAM and 128 GB Optane DCPMM per channel/controller, providing a

total of 256 GB DRAM and 1 TB Optane across the system. The system is paired with

a Nvidia Ampere-based A100 GPU using 16 PCIe Gen 4 links that provide a maximum

theoretical bandwidth of 32.0 GB/s. The GPU has 40 GB of HBM2 memory, organized

as 5 stacks with 8 memory dies per stack [201].

Our evaluation considers all available configurations of Optane/DRAM. This in-

cludes Optane as storage with ext4-DAX file system [21], Optane Memory Mode (Op-

tane main memory with DRAM cache), and Optane + DRAM main memory which is

enabled by the Memkind library [30]. The last configuration exposes Optane memory

as memory-only NUMA nodes.

5.2.2 Benchmarks

We use NVIDIA nvbandwidth [202] for basic bandwidth measurements between host

and GPU. Our characterization presents results for both the NUMA nodes and with

all combinations of Optane/DRAM host memory. To quantify real world performance

impact of Optane on GPU performance, we use FlexGen [254] to run two variants
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Table 5.1: System configuration

CPU

Model Dual socket Intel Xeon Gold 6330 (Ice Lake)

Frequency Base: 2.0 GHz, turbo: 3.1 GHz

Cores (per socket) 28 (56 threads)

Memory

(per socket)

4 memory controllers

16 GB DDR4-2933 DRAM x2 (per controller)

128 GB Optane (200 series) x1 (per controller)

GPU

Model Nvidia A100

Memory 40GB HBM2 (1215 MHz, 1555 GB/s)

Interface PCIe Gen 4 x16 (32.0 GB/s)

of OPT models [308], OPT-30B and OPT-175B. OPT-30B models the scenario where

model size surpasses GPU memory but fits in host DRAM. OPT-175B pushes further

and surpasses host DRAM memory but fits in Optane memory, allowing us to compare

the performance of heterogeneous main memory to traditional disk offloading. OPT-

30B and OPT-175B contain 48 and 96 decoder blocks, resulting in 96 and 192 hidden

layers (MHA + FFN), respectively. Along with one input embedding layer and one

output embedding layer, the models have a total of 98 and 194 layers. Table 5.2 lists

the various memory configurations we evaluate for each model. The input and output

sequence lengths are limited to 128 and 21 tokens, respectively. We use prompts from

the C4 dataset [222] and repeat each prompt 10 times.

5.2.3 Metrics

We evaluate LLM performance using three key metrics: time to first token (TTFT),

time between tokens (TBT), and throughput in terms of tokens per second. TTFT
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Table 5.2: LLM model/memory configuration

Model (# of Memory Configuration
Label

Decoders) SSD Optane DRAM

OPT-30B

(48)
N/A

N/A Memory DRAM

Memory
N/A NVDRAM

Cache MemoryMode

OPT-175B

(96)

Storage N/A Memory SSD

N/A

Storage Memory FSDAX

Memory
N/A NVDRAM

Cache MemoryMode

measures prefill latency, the inference stage that processes the entire input prompt.

TBT measures decode latency, the successive stages of inference that utilize the KV

cache from the prefill stage alongside the previously generated token to generate the

next token. Finally, throughput measures the overall token generation rate across the

entire process. For each metric, we present the arithmetic mean across all its values

except the first, which we discard to account for cold start effects.

5.3 GPU/Host Data Movement Characterization

5.3.1 Basic Bandwidth Measurements

Figure 5.1 presents host to GPU (5.1a) and GPU to host (5.1b) bandwidth for buffer

sizes between 256 MB and 32 GB. The figure presents the bandwidth when copying

to/from DRAM, Optane DRAM (NVDRAM), and Optane Memory Mode (MM) for

both the NUMA nodes.

Figure 5.1a shows how host to GPU bandwidth suffers a near constant loss of 20%

with NVDRAM compared to DRAM up to a buffer size of 4 GB, with NVDRAM
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(b) GPU to host. DRAM-0, DRAM-1, and MM-1 overlap perfectly.

Figure 5.1: Host/GPU memory copy bandwidth. The numbers 0 and 1 represent the

two NUMA nodes.

bandwidth dropping from 19.91 GB/s at 4 GB to 15.52 GB/s at 32 GB and increasing

the performance deficit to 37%. We attribute this drop in performance to potentially

non-consecutive data placement on NVM media due to wear-leveling and to misses in

the Address Indirection Table (AIT) buffer that translates physical addresses to NVM

media addresses [280, 293, 307]. MM is able to completely hide this performance gap,

however, because the buffer size fits within the DRAM cache capacity (note that the

MM and DRAM lines in Figure 5.1a overlap each other).

The performance gap between DRAM and NVDRAM is even wider when it comes

to Optane’s write performance. GPU to host bandwidth (Figure 5.1b) is 88% lower

with NVDRAM compared to DRAM across all buffer sizes, maxing out at 3.26 GB/s

with a buffer size of 1 GB. This bandwidth is consistent with prior observations [129].

We also notice how bandwidth for Optane is higher on NUMA node 1 compared to

NUMA node 0. This is because the GPU is connected to PCIe ports local to node 1,
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meaning that accesses to node 0 need to go over the on-chip interconnect. Prior work

has shown how Optane write performance worsens when accessed remotely [218]. Our

own results using Intel Memory Latency Checker [274] also confirm this, including

remote MM’s inability to reach remote DRAM bandwidth.

5.3.2 LLM Performance

Figure 5.2 shows the performance of OPT-30B and OPT-175B models in terms of av-

erage TTFT, TBT, and throughput. The three metrics are presented for a batch size of 1

along with the maximum permissible size based on available GPU memory to avoid the

KV cache impacting communication overheads (32 for OPT-30B and 8 for OPT-175B).

1 32
Batch Size

0.0
0.3
0.6
0.9
1.2
1.5
1.8

La
te

nc
y 

(s
)

NVDRAM
MemoryMode

DRAM

(a) TTFT: OPT-30B

1 32
Batch Size

0.0
0.3
0.6
0.9
1.2
1.5
1.8

La
te

nc
y 

(s
)

NVDRAM
MemoryMode

DRAM

(b) TBT: OPT-30B

1 32
Batch Size

0

10

20

30

40

Th
ro

ug
hp

ut
 (t

ok
en

s/
s)

NVDRAM
MemoryMode

DRAM

(c) Throughput: OPT-30B

1 8
Batch Size

0
10
20
30
40
50
60

La
te

nc
y 

(s
)

SSD
FSDAX

NVDRAM
MemoryMode

(d) TTFT: OPT-175B

1 8
Batch Size

0
10
20
30
40
50
60

La
te

nc
y 

(s
)

SSD
FSDAX

NVDRAM
MemoryMode

(e) TBT: OPT-175B

1 8
Batch Size

0.0

0.2

0.4

0.6

0.8

Th
ro

ug
hp

ut
 (t

ok
en

s/
s)

SSD
FSDAX

NVDRAM
MemoryMode

(f) Throughput: OPT-175B

Figure 5.2: Time to first token (TTFT), time between tokens (TBT), and throughput

(tokens/s).

SSD and FSDAX configurations are, unsurprisingly, the slowest performing config-
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urations. While FSDAX improves TTFT/TBT/throughput by 33.46%/33.48%/35.31%

and 33.44%/33.58%/46.68% for OPT-175B with batch sizes 1 and 8, respectively, it

falls short of reaching NVDRAM’s performance. This is largely a result of Optane be-

ing exposed through the file system interface in FSDAX, requiring the use of a bounce

buffer in DRAM when copying weights from Optane to GPU.

NVDRAM’s lower bandwidth compared to DRAM impacts both TTFT and TBT

significantly, hurting overall throughput. OPT-30B’s TTFT increases by 33.03% and

15.05% with batch sizes 1 and 32, respectively, under NVDRAM compared to DRAM.

Similarly, TBT goes up by 33.03% and 30.55% under the two batch sizes. This leads to

a reduction in throughput by 18.96% and 22.68%, respectively. MemoryMode matches

DRAM performance because the host-side model weights fit within DRAM cache.

While there is no DRAM optima to compare against for OPT-175B, MemoryMode

improves TTFT/TBT/throughput compared to NVDRAM by 7.67%/7.69%/0.60% and

8.90%/8.92%/7.98% for batch sizes 1 and 8, respectively. Keeping in mind that the

model size outgrows the DRAM cache size here, an all-DRAM system likely performs

even better than this.

Increasing batch sizes improves throughput almost linearly, as seen in Figures 5.2c

and 5.2f. Ordinarily, prefill is compute bound because of its high operational intensity.

As a consequence, TTFT tends to increase with an increase in batch size. We see this

with OPT-30B where TTFT increases by 32.41%, 14.51%, and 31.50% under DRAM,

NVDRAM, and MemoryMode configurations, respectively, when going from a batch

size of 1 to 32 (Figure 5.2a). OPT-175B does not experience an increase in TTFT

(Figure 5.2d) with increasing batch size because its large weight size makes its prefill

stage memory bound. Decode, on the other hand, is memory bound because it con-

sists of a series of GEMV computations which have low operational intensity. While

increasing the batch size helps convert the GEMV computation in the feed forward net-

work (FFN) stage (Section 2.5) into GEMM, each prompt must still perform a series of

GEMV operations in the multi-head attention (MHA) stage (Section 2.5) with its own
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local KV cache. This limits the scaling of TBT with increasing batch sizes, as seen in

Figures 5.2b and 5.2e.
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(d) Decode: OPT-175B

Figure 5.3: Compute/communication overlap during prefill and decode stages. The bars

represent average weight transfer time while the line represents average compute time.

The horizontal dashed line represents the ideal weight transfer time on an all-DRAM

system. Note the different scales for the two y-axes in (b) and (d).

In order to better understand prefill and decode performance, we use FlexGen’s

built-in timers to get a breakdown of the time spent on compute and communication in

each phase. Recall that FlexGen overlaps compute in layer j with the loading of weights

for layer j+1 (Section 5.1.1). Figure 5.3 presents this overlap on a per-layer basis for

each model with different batch sizes, separate for both prefill and decode stages. Since

both OPT-30B and OPT-175B consist of several decoder blocks (Table 5.2), the longer

running operation within this pipeline affects the overall inference latency. For OPT-

175B, we also measure and show the ideal average weight transfer time in an all-DRAM
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system by running the model with 8 decoder blocks instead of the default 96.

Figure 5.3 shows how the average weight transfer time under each memory config-

uration affects its TTFT and TBT performance (Figure 5.2), highlighting the memory-

bound nature of LLM inference. Looking at OPT-30B’s prefill stage (Figure 5.3a),

we observe that the average compute time increases by about 15x for all three config-

urations when the batch size is increased from 1 to 32. This is the reason behind the

increase in TTFT we observed earlier (Figure 5.2a) since many layers become compute-

bound (even though the average compute time is below the average weight transfer

time). The decode stage stays largely memory-bound, however, even with the large

batch size (Figure 5.3c). Batching has been known to have minimal impact on the arith-

metic intensity of the decode stage [213]. OPT-175B, meanwhile, is memory-bound in

both prefill and decode stages because of its significantly larger weight sizes (hidden

layer size of 12,288 versus OPT-30B’s 7,168). While an all-DRAM system would

improve the average weight transfer time in both stages by 32.78% and 22.41% com-

pared to NVDRAM and MemoryMode, respectively, it will still be orders-of-magnitude

higher than the compute time.
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(b) OPT-175B: Decode

Figure 5.4: Compute/communication overlap during prefill and decode stages with

compression. The bars represent average weight transfer time while the line repre-

sents average compute time. The symbol (c) represents compressed configurations.

Compression/quantization is a well-known strategy to decrease model size, reduc-
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ing both the model footprint and weight transfer time at the cost of increased compu-

tation, due to on-the-fly decompression, and potential accuracy loss. FlexGen supports

compressing model weights down from FP16 to a 4-bit representation using group-wise

quantization [253], reducing the model size to nearly a quarter with a negligible loss

in accuracy [254]. This allows the model to fit entirely on host memory, even with

traditional DRAM, obviating the need to offload to storage. Figure 5.4 highlights the

compute/communication tradeoff of compression for OPT-175B for NVDRAM, Mem-

oryMode, and DRAM configurations. Compared to the baseline, compression reduces

weight transfer time by 72% and 74% for NVDRAM and MemoryMode, respectively,

bringing it within 25% and 6% of DRAM ideal. The compute time, meanwhile, in-

creases by anywhere between 2.5x-13x for both NVDRAM and MemoryMode config-

urations. Compression allows OPT-30B to fit fully into GPU memory, which we do not

present.

5.4 Impact of Weight Placement

Given the memory-bound nature of LLM inference, we take a closer look at the cost

of transferring each weight to the GPU. We focus on model weight placement since

the weight size dominates the total memory footprint. For instance, for a single OPT-

175B self-attention block, the model weights occupy 3.38 GB of memory while the KV

cache, the second highest contributor to the total memory footprint, occupies 47.98 MB

for a batch size of 1 at the maximum context length of 2048 (72x smaller than weights).

The total memory footprint of the model weights is 324.48 GB while that of the KV

cache is 4.5 GB. For context, the GPU we use for our evaluation has 40 GB of onboard

memory, which can hold the entire KV cache (4.5 GB), but not model weights (324.48

GB). We first evaluate the cost of transferring weights under FlexGen’s existing weight

strategy, highlighting an imbalance in compute and communication overlap. Based

on our analysis, we propose two alternate weight placement schemes, both of which
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utilize compression to minimize data movement. The goal of the first scheme is to

optimize for latency by mitigating the imbalance in compute and communication. The

second scheme, meanwhile, optimizes for throughput by maximizing the batch size.

We present these optimizations for NVDRAM and MemoryMode configurations only

using OPT-175B, making a case for such memory technologies as an effective DRAM

replacement for LLM inference.

5.4.1 FlexGen’s Weight Transfer Costs

Figure 5.5a plots the latency of loading each layer of OPT-175B up to layer 70 of

194 for all memory configurations with compression. The plot has a striking saw-

tooth pattern that continues all the way until layer 194 (not shown). This is a result of

FlexGen’s weight placement scheme, presented in Listing 5.2. Given a list of weights

(weight specs) and a user-specified percentage distribution across storage, host,

and GPU (described in policy), the allocator, init weight list, distributes each

layer’s weights across the hierarchy to meet this goal. To achieve this, the function iter-

ates over all the weights of the layer (line 17) and calculates the percentage contribution

of the weights preceding weight i to the total layer size (lines 18-20). Based on this

percentage and the input percentage distribution, get choice() returns the device

to allocate weight i on.

Our experiments show that this allocation scheme is imperfect and struggles to

achieve the desired percentage distribution because differences in weight sizes do not

lend themselves well to such a fine-grained distribution. For instance, for (storage,

host, GPU) ratios of (65, 15, 20) under SSD/FSDAX configurations, the achieved over-

all weight distribution is (58.6, 33.1, 8.3). Similarly, the input and achieved distribution

for NVDRAM/MemoryMode is (0, 80, 20) and (0, 91.7, 8.3), respectively. Further-

more, the weight distribution scheme is unaware of the relative size of each layer, which

leads to the imbalanced weight transfer times across layers we see in Figure 5.5a. In
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Figure 5.5: Per-layer weight load latency for a subset of OPT-175B layers (70/194)

(a) and weight distribution of multi-head attention (MHA) and feed forward network

(FFN) layers in SSD/FSDAX (b) and NVDRAM/MemoryMode (c) configurations.

particular, the dips and ridges in the figure correspond to multi-head attention (MHA)

and feed forward network (FFN) layers, respectively. Figures 5.5b and 5.5c show the

weight distribution of these two layers under SSD/FSDAX and NVDRAM/Memory-

Mode configurations, respectively. In both cases, we see how the larger FFN layer gets

no allocation on the GPU while the smaller MHA layer does.

A direct consequence of this asymmetric weight distribution is that weigh transfer

cannot be hidden effectively behind computation. Figure 5.6 shows the time spent in

loading weights for FFN/MHA layers and how it overlaps with computing MHA/FFN

for the prefill stage. MHA has a lower computation time than FFN, yet it is overlapped

with the transfer of a larger set of weights because of FlexGen’s weight distribution.
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Listing 5.2: FlexGen weight allocation algorithm

1 def get_device(cur_percent, percents, choices):

2 percents = numpy.cumsum(percents)

3 for i in range(len(percents)):

4 if cur_percent < percents[i]:

5 return choices[i]

6 return choices[-1]

7

8 def init_weight_list(weight_specs, policy, env):

9 dev_percents = [policy.disk_percent, policy.cpu_percent,

10 policy.gpu_percent]

11 dev_choices = [env.disk, env.cpu, env.gpu]

12

13 sizes = [spec.size for spec in weight_specs]

14 sizes_cumsum = numpy.cumsum(sizes)

15

16 for i in range(len(weight_specs)):

17 mid_percent = (sizes_cumsum[i] - sizes[i] / 2) / \

18 sizes_cumsum[-1]

19 dev = get_choice(mid_percent * 100, dev_percents,

20 dev_choices)

21 dev.allocate(weight_specs[i])

5.4.2 HeLM: Latency Optimizing Weight Placement

In order to balance the compute/communication pipeline, we introduce Heterogeneous

Layerwise Mapping (HeLM), a modified weight placement algorithm that attempts to

equalize computation of layer i with weight transfer time of layer i+1. The key idea

behind HeLM is to allocate more GPU space for layers whose transfer time will be

overlapped with shorter computing layers. HeLM accomplishes this by allocating the

weights of the first fully connected (FC) layer of FFN on the GPU, along with the

weights of all the bias and normalization layers for both MHA and FFN. The rest of
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the prefill stage of OPT-175B with compression enabled. The bars represent average

weight transfer time while the line represents average compute time. The overlap in

decode stage with both batch sizes is nearly identical to prefill with batch size 1.

the MHA and FFN weights are offloaded on to the host memory. The algorithm is

presented in Listing 5.3 and illustrated in Figure 5.7a.

Listing 5.3 shows how HeLM uses a custom weight distribution for MHA (lines

2-3) and FFN (lines 4-5) layers, along with sorting the weights in increasing order by

size (line 13). Note that HeLM specifies device percentages in the order (GPU, host,

storage), instead of the default (storage, host, GPU.
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Figure 5.7: (a) Breakdown of HeLM’s weight distribution across host and GPU. The

number under each weight is the uncompressed/compressed size of the weight. (b)

HeLM’s weight distribution.

Figure 5.7b shows the weight distribution of MHA and FFN layers achieved by
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Listing 5.3: HeLM weight allocation algorithm. The algorithm follows the default

allocation algorithm line 14 onwards (Listing 5.2, line 13).

1 def init_weight_list(weight_specs, policy, env):

2 if is_mha(weight_specs):

3 dev_percents = [10, 90, 0]

4 elif is_ffn(weight_specs):

5 dev_percents = [30, 70, 0]

6 else:

7 dev_percents = [policy.gpu_percent, policy.cpu_percent,

8 policy.disk_percent]

9

10 dev_choices = [env.gpu, env.cpu, env.disk]

11

12 weight_specs = list(sorted(weight_specs, key=lambda x: x.size)

13 sizes = [spec.size for spec in weight_specs]

14 ...

HeLM. This distribution reduces the time to transfer FFN weights by 49.33% while

increasing it by 32.55% for MHA layers, as seen in Figure 5.8a. However, the increase

in MHA load time is easily overlapped with FFN computation, leading to an overall

reduction in layer processing time.

The balanced compute/communication pipeline directly results in improvements

to inference latency. Figure 5.8b shows how HeLM improves TTFT and TBT on

NVDRAM by 27.20% and 27.44% compared to the baseline scheme (Section 5.4.1).

These numbers are within 8.75% and 8.91% of DRAM. MemoryMode, meanwhile, ex-

periences an improvement of 31.90% and 32.28%, both of which are within 1.73% and

1.64% of DRAM. These results highlight how careful data placement can enable the use

of Optane-like emerging memory technologies, and the heterogeneous configurations

they enable, in latency-sensitive LLM serving scenarios.
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5.4.3 All-CPU: Throughput Optimizing Weight Placement

We study a second optimization called All-CPU where all weights are placed on host

memory, leaving GPU memory for KV cache and hidden state. This makes sense be-

cause even with HeLM, only 33% of the total weights are held in the GPU memory. By

pushing all of them out to host memory, we can trade weight transfer time for improved

weight reuse enabled by a higher batch size. While this optimization has been explored

before [254], we present it in the context of heterogeneous memory and evaluate how

it fares compared to traditional DRAM.

Figures 5.9a, 5.9b, and 5.9c compare the TTFT, TBT, and throughput of All-CPU

to the baseline scheme (Section 5.4.1) for batch sizes 1, 8, and 44, the latter of which

is only possible with All-CPU. With all three batch sizes, the KV cache continues to

fit inside GPU memory. All-CPU does not have a significant impact on either TTFT

or TBT (1% degradation) or throughput (5% gain) with NVDRAM compared to the

baseline at batch sizes 1 and 8. This highlights the minimal performance advantage of

keeping model weights on GPU at all when optimizing for throughput. All-CPU makes
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better use of that space by allocating it to the KV cache instead and expanding the

batch size. A key result here is the 5x increase in throughput when going from baseline

NVDRAM at batch size 8 to All-CPU NVDRAM at batch size 44 (Figure 5.9c). In

fact, the throughput at batch size 44 with All-CPU NVDRAM is within 6% of All-CPU

DRAM.

Figures 5.9d and 5.9e show how the compute/communication overlap varies be-

tween the the baseline scheme with a batch size of 8 and All-CPU with a batch size of

44. While MHA weight transfer time increases significantly with All-CPU owing to

FlexGen’s weight allocation (Figure 5.5c), it is completely hidden behind computation

in both prefill and decode stages. Interestingly, the compute time in decode stage does

not increase when the batch size is increased from 8 to 44 (Figure 5.9e), indicating

potential compute under-utilization. By maximizing the batch size, All-CPU improves

compute utilization which leads to an overall increase in throughput (Figure 5.9c).

All-CPU MemoryMode reduces TTFT/TBT compared to All-CPU NVDRAM

by 5.83%/5.77% with batch size 1, by 6.86%/9.46% with batch size 8, and by

0.24%/8.39% with batch size 44. It impacts the throughput the most at batch size

44, however, improving it by 7.57% and performing at-par with DRAM (1.15% better).

This is evidence that optimized data placement on heterogeneous memory can not only

achieve latency close to an all-DRAM system, but also throughput.

5.4.4 CXL Performance Projections

Like Intel Optane, CXL memory provides high capacity at the cost of performance.

This cost varies based on both the CXL controller architecture as well as the underlying

memory technology [262]. In order to evaluate the impact of our proposed optimiza-

tions on CXL memory, we borrow the bandwidth of two different CXL configurations

from prior work and project the performance of each. These configurations are pre-

sented in Table 5.3. CXL-FPGA is based on evaluation presented by Sun et al. [262]
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(called CXL-C in their paper) and uses an FPGA-based CXL controller backed by sin-

gle channel DDR4-3200 memory. CXL-ASIC, meanwhile, is borrowed from Wang et

al. [279] (called System A in their paper) and is based on an undisclosed commercial

ASIC implementation backed by single channel DDR5-4800 memory. We utilize the

bandwidth numbers for each configuration from its respective paper to project weight

transfer times for each layer and calculate the achievable compute/communication over-

lap (Table 5.4), TTFT/TBT (Figure 5.10a), and throughput (Figure 5.10b), comparing

it to NVDRAM.

Table 5.3: CXL configurations

Name Memory Technology Bandwidth (GB/s)

CXL-FPGA [262] DDR4-3200 x1 5.12

CXL-ASIC [279] DDR5-4800 x1 28

Table 5.4 shows the compute/communication overlap for each CXL configura-

tion under all three weight allocation policies: baseline (Section 5.4.1), HeLM (Sec-

tion 5.4.2), and All-CPU (Section 5.4.3). CXL-FPGA and CXL-ASIC cover a wide per-

formance spectrum owing to differences in their CXL controller design. CXL-FPGA

achieves considerably lower memory bandwidth than both NVDRAM and CXL-ASIC.

The lower bandwidth means that CXL-FPGA stays largely memory bound across all

weight allocation policies and inference stages, except All-CPU prefill with a batch

size of 44. CXL-ASIC significantly outperforms both NVDRAM and CXL-FPGA,

being the only configuration that achieves FFN load latency lower than MHA com-

pute latency with HeLM. These results highlight how HeLM and All-CPU are able to

improve the compute/communication overlap across a wide variety of CXL memory

implementations.

The improved compute/communication overlap with HeLM directly translates to

lower inference latency, as shown in Figure 5.10a. HeLM improves TTFT/TBT by

27% and 21% for CXL-FPGA and CXL-ASIC, respectively. The improvements for
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Table 5.4: Overlap of compute and communication with different weight allocation

policies under NVDRAM configuration and the three different CXL configurations. A

ratio of 1 indicates perfect overlap, while lower and higher values indicate memory-

boundedness and compute-boundedness, respectively.

Allocation Batch
Stage

MHA compute/FFN Load (ratio) FFN Compute/MHA Load (ratio)

Policy Size NVDRAM (c) CXL-FPGA (c) CXL-ASIC (c) NVDRAM (c) CXL-FPGA (c) CXL-ASIC (c)

Baseline

1
Prefill 0.36 0.1 0.56 1.86 0.53 2.9

Decode 0.36 0.1 0.55 1.85 0.53 2.88

8
Prefill 0.52 0.14 0.79 3.07 0.87 4.77

Decode 0.36 0.1 0.55 1.85 0.53 2.88

HeLM 1
Prefill 0.72 0.2 1.12 1.4 0.4 2.18

Decode 0.71 0.2 1.1 1.4 0.4 2.16

All-CPU

1
Prefill 0.37 0.1 0.56 1.41 0.4 2.18

Decode 0.36 0.1 0.55 1.39 0.39 2.16

8
Prefill 0.51 0.14 0.79 2.3 0.65 3.57

Decode 0.36 0.1 0.55 1.39 0.39 2.16

44
Prefill 1.25 0.37 2.01 4.82 1.43 7.84

Decode 0.35 0.1 0.57 1.33 0.4 2.16

CXL-ASIC come from reducing FFN weight transfer time and increasing MHA weight

transfer time, thereby balancing compute with communication. CXL-FPGA, on the

other hand, performs better simply because HeLM is able to store more weights on the

GPU compared to the baseline scheme.

The gains from All-CPU are more varied. While NVDRAM and CXL-ASIC ex-

perience nearly the same performance with both baseline and All-CPU at batch size

8, CXL-FPGA suffers an 8.35% drop in throughput due to its poor memory perfor-

mance. Nonetheless, both CXL-ASIC and CXL-FPGA achieve 4.74x and 5.04x higher

throughput when going from the baseline scheme at batch size 8 to All-CPU at batch

size 44, highlighting the efficacy of the placement scheme regardless of memory per-

formance.
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and All-CPU (b) on CXL-based systems using OPT-175B.

5.5 Related Work

LLM memory optimizations: The scale of machine learning models is a long

standing problem with several algorithmic and systems solutions. Pruning/sparsifica-

tion [103, 159] and quantization [59, 118] are among the oldest and most well-known

solutions. Pruning reduces model size by zero-ing out weights to reduce computation

and memory footprint while aiming to preserve model accuracy, and has been shown

to be effective for LLMs [180, 288]. Quantization compresses the model by using

smaller bit-width representations for weights [94, 302], KV cache [117, 176], and/or

activations [118] while also minimizing accuracy loss. This can be performed either

during training (Quantization-Aware Training) [175, 253], where the model is retrained

on quantized weights, or post-training (Post-Training Quantization) [289, 297], which

generally scales better for large models. FlexGen adopts the second approach, com-

pressing weights down to four bits using group-wise quantization (GWQ) [253]. GWQ

divides weights into groups (64 in FlexGen), normalizes each value to the maximum

value in its group and scaling it by the maximum supported value size (15 for 4 bits).

This has shown to preserve accuracy for both encoder-only models like BERT [253]

and decoder-only models like OPT [254].
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KV cache is the second highest contributor to the total memory footprint of a LLM

during inference, accounting for as much as 30% of the total size [154]. Unlike model

parameters, KV cache grows dynamically with input batch size and is a key deter-

minant of the model throughput. PagedAttention [154] applies ideas from operating

system virtual memory management to manage this cache at a page-like block gran-

ularity to minimize memory waste and fragmentation, where each block contains KV

values for a fixed number of tokens. S3 [134] also minimizes KV cache size by pre-

dicting output sequence length for each prompt and limiting its associated cache size.

CachedAttention [83] offloads inactive KV cache from GPU to host memory and disk

during multi-turn conversations to prevent recomputation on older prompts. This cache

is then proactively brought back to the GPU based on a predictor, along with overlap-

ping communication with layer-wise computation. These approaches can be combined

with our work to further increase batch sizes.

The memory-bound nature of LLMs makes them a great fit for processing in mem-

ory (PIM) architectures, as we saw in Chapter 4. In particular, LLMs can leverage

host/PIM concurrency by overlapping query/key/value generation and self-attention on

host and PIM, respectively [111, 212], or by distributing fully connected layers between

host and PIM at a head granularity [248]. These architectures address the computational

challenges of LLM inference but not capacity.

Application-specific optimizations for Optane: Use of Intel Optane DCPMM is

of particular interest to HPC and ML community given the large memory footprint of

their applications. Patil et al. [214] characterize the performance of HPC applications

under App Direct and Memory Mode configurations, highlighting significant perfor-

mance drops with former and the efficacy of the latter, especially when application

working set sizes fit in the DRAM cache. Weiland et al. [282] demonstrate the perfor-

mance scaling of materials simulation (CASTEP [56]), using Memory Mode to reduce

execution time and energy consumption, and weather forecasting (IFS [182]), using

App Direct mode to improve I/O performance, across a distributed system using Op-
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tane. Venkatesh et al. [273] characterize the performance of producer/consumer-based

HPC workflows using Optane as intermediate storage, providing performance recom-

mendations based on the access pattern of the producer and consumer. AutoTM [112]

is a data management framework for machine learning training that solves a profile-

guided integer linear program (ILP) to optimally place tensors in either DRAM or Op-

tane, optimizing for execution time under a DRAM capacity constraint. Ren et al. [230]

develop data placement and movement scheme for WarpX, an exascale plasma simula-

tion tool. The proposed scheme optimizes for execution time by statically partitioning

data between DRAM and PM, and performing dynamic data movement based on a

performance model. Our work demonstrates how careful placement of LLM weights

between Optane and GPU memory can compensate for Optane’s slower performance

compared to DRAM.

CXL-based tiered memory: TPP [186] employs a sampling and Linux LRU-based

page hotness classification scheme to keep hot and cold pages in CXL and local mem-

ory, respectively, alongside asynchronous page allocation and reclamation. Pond [167]

is a tiered CXL-based system for cloud vendors that uses a machine learning model

to predict local vs. CXL allocation size for each virtual machine (VM), built on the

observation that most VMs are insensitive to higher memory access latency. Pond also

integrates a run time QoS monitoring system that handles mispredictions by allocating

more local memory. Compared to these application-agnostic schemes, the presented

work shows how application-specific optimizations can sufficiently hide the perfor-

mance deficiencies of heterogeneous host memory. These insights are applicable to

CXL too since CXL memory can be backed by SSDs [125, 140, 216, 243, 295] or even

Optane itself [125].
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5.5.1 GPU Memory Expansion

Our work very closely matches that of Choi et al. [52], where the authors evaluate

the LLM serving performance of Nvidia Grace Hopper Superchip (GHS) [204], using

vLLM framework [154] to serve LLaMa 3.1 8B, 70B, and 405B models [189]. There

are several key differences between our work and theirs. First, GHS pairs only tradi-

tional DRAM with the CPU, while we evaluate the impact of emerging memory tech-

nologies and the heterogeneous configurations they enable. Second, unlike FlexGen,

vLLM considers GPU memory as an inclusive cache. While this is similar to the All-

CPU layout we evaluate, our work also evaluates a flat memory hierarchy where weight

placement across GPU and host memory plays a key role in determining performance.

Finally, GHS uses Nvidia NVLink [199] as the CPU/GPU interconnect which offers

considerably higher bandwidth compared to the PCIe 4.0 interface used in ours [204],

affecting the cost of CPU/GPU data movement. Keeping these differences in mind, we

consider the two works to be complementary to each other.

Main memory: Zheng et al. [310] introduced the idea of “replayable far faults”

wherein a GPU page fault appears as an ultra long latency memory access, avoiding

stalling the SM and letting other warps execute. Combined with a prefetching scheme

that saturates the PCIe bandwidth, they show a net performance improvement over

the traditional “copy-then-execute” model. Nvidia’s Unified Memory (UM) [107] is

largely based on this model and improves programmer productivity at the cost of per-

formance [11, 79, 136]. This cost has spawned a large body of work analyzing and op-

timizing the prefetch/eviction policies [79, 80, 81, 89, 166], software hint-driven place-

ment and prefetching [47], and GPU throttling and compression [166]. Alternatives to

UM includes proposal like Demand MemCpy (DMC) [133], a hardware block added to

the GPU memory management unit (GMMU) lazily copies data from host memory to

GPU memory on-demand without interrupting the software. UVMMU [211] also ex-

tends GMMU to provide hardware support for page fault handling. Unlike DMC, how-

ever, UVMMU supports Unified Memory and, consequently, supports memory over-
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subscription. BW-AWARE [5, 6] is a heterogeneous memory page placement strategy

for GPUs that divides the total allocation size across each memory type based on the

ratio of its bandwidth to the total available system bandwidth. In addition, the authors

evaluate a compiler-assisted scheme for applications with a non-uniform access pattern.

Storage: Allowing GPU direct access to storage is useful in minimizing data move-

ment overheads for HPC and ML workloads. Nvidia GPUDirect Storage [265] facil-

itates copying of data directly from storage to GPU memory, avoiding CPU bounce

buffers and overheads. NVMMU [306] integrates storage and GPU software stacks to

reduce software overheads in GPU/storage transfers, alongside modifying to the stor-

age driver to enable direct movement of data between GPU and storage without host

bounce buffers. DRAGON [185] maps files from storage into Linux page cache and

then exploits Unified Memory (UM) to transfer those pages to the GPU on-demand.

G10 [305] improves ML training by mapping storage into UM page tables and moving

tensors between storage, CPU, and GPU based on an offline tensor-liveness analysis

stage. Pandey et al. [209] propose GPM, a library that enables fine-grained persistency

support on byte-addressable non-volatile memory like Optane from GPUs. GPM pro-

vides a set of primitives that provide support for persistent transactions, logging, and

checkpointing in GPU kernels. Based on this work, they propose a persistency model

for GPUs [210].

CXL: Arif et al. [22] evaluate the impact CXL-enabled memory on GPU perfor-

mance in a multi-GPU, multi-tenant scenario. The authors demonstrate the inefficacy

of allocating application memory in a local DRAM-first fashion as well as of distribut-

ing DRAM memory uniformly across all GPUs, making a case for proportionally di-

viding DRAM capacity across all GPU kernels based on their total memory need. Gouk

et al. [91] develop and synthesize a CXL controller for GPUs to directly access CXL

Type-3 memory. Optimized for latency and evaluated with the open-source RISC-V

based Vortex GPU [268], the controller integrates additional optimizations to prefetch

loads and buffer writes to improve performance when interfacing with SSD-backed
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memory [125, 216, 243].

On-chip heterogeneous memory: Wang et al. [275] quantify the impact of on-chip

PCM in GPUs, showing how it hurts both performance and energy efficiency. To rectify

this, they propose a compiler-directed data placement scheme in a hybrid DRAM/PCM

architecture along with hardware support for dynamic data movement between the two

memories. Hong et al. [115] perform a design space exploration for storage-class mem-

ory backed DRAM cache architectures, presenting techniques to minimize tag probe

overhead and cache bypassing to improve utilization. Prior work has also explored

persistence on GPUs. Chen et al [43, 44] propose the use of “helper warps” in GPU

kernels to move persistence off the application critical path. These warps can be adap-

tively turned off under high memory contention to reduce memory pressure. Lin et

al. [171] propose an epoch persistency model for GPUs that can have varying scopes

corresponding to GPU thread hierarchy.

5.6 Conclusion

As large language models continue to evolve, the growth in model sizes will continue

to stress the memory subsystem for performance and capacity. This chapter shows how

replacing DRAM with emerging technologies like Intel Optane can enable larger model

sizes that fit in main memory, but not without a performance penalty. Diving deeper into

the performance characteristics of running inference on OPT-30B and OPT-175B mod-

els with FlexGen, a LLM serving framework, we show how this performance degra-

dation is largely a function of data placement and balancing computation with com-

munication. We evaluate two alternate data placement schemes, one each optimizing

for latency and throughput. The latency optimizing scheme, called HeLM, performs

compute-time aware data placement that attempts to equalize the compute time of layer

i and the weight transfer time of layer i+1. HeLM improves compute/communication

pipeline balance and achieves token generation latency on Optane main memory within
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9% of an all-DRAM system. The throughput optimizing scheme, called All-CPU, of-

floads all weights to the host memory, bumping the maximum possible batch size up

from 8 to 44. The increased batch size helps All-CPU Optane net a throughput increase

of 5x compared to baseline DRAM at a batch size of 8, while maintaining the same time

between tokens. All-CPU Optane is within 6% of All-CPU DRAM, paving the way for

models that exceed the capacity of DRAM. Our projections on CXL-enabled memory

indicate that these findings remain valid for a broad spectrum of CXL devices. The pre-

sented techniques may be generalized to other models and frameworks by adapting to

their compute schedule and data movement costs. We hope that the insights presented

in this chapter inform the design of improved weight placement algorithms that can

automatically make latency/throughput tradeoffs based on desired quality of service

requirements.
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6 Conclusion

Data movement bottlenecks have long limited the efficiency of computer systems and

will continue to do so in the foreseeable future. This dissertation identified three criti-

cal data movement bottlenecks in accelerator-rich systems and proposed solutions that

mitigate them in a cost effective manner.

First, Chapter 3 pinpoints inter-accelerator communication as a key issue that ham-

pers both the performance and energy efficiency of mobile systems-on-chip (SoCs) that

integrate multiple loosely-coupled accelerators. This dissertation proposes RELIEF, an

online accelerator scheduling policy that maximizes the utilization of existing inter-

accelerator communication hardware. RELIEF exploits the slack time of one applica-

tion to prioritize requests from another application such that the latter’s producer and

consumer requests can be scheduled in consecutive order and, thus, communicate using

specialized hardware. By being aware of each application’s quality of service (QoS) re-

quirements, RELIEF improves both energy consumption and fairness by 18% and 14%,

respectively. The presented implementation of RELIEF achieves sub-microsecond av-

erage scheduling latency on a microcontroller and integrates into existing SoCs with

little to no hardware modifications.

Second, Chapter 4 quantifies the negative performance impact of integrating pro-

cessing in memory (PIM) into contemporary GPUs, especially in terms of fairness be-
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tween concurrently executing PIM and non-PIM applications. This dissertation reme-

dies these issues by proposing changes to the interconnect and memory controller, the

two key points of contention for PIM and non-PIM requests. At the interconnect, sepa-

rate virtual channels for the two request types prevents memory intensive PIM requests

from degrading the flow of non-PIM requests. This ensures the memory controller

has sufficient visibility into both the request streams. Such improved visibility helps

the proposed memory controller scheduling policy, F3FS, to optimize for both fair-

ness between the two request types and memory throughput by balancing locality for

each request type and the frequency of switches between them. Compared to a base-

line GPU-PIM system, the proposed architecture improves fairness and throughput by

up to 72% and 22%, respectively. These modifications add minimal area and power

overheads to existing GPUs.

Hardware support for accommodating PIM-enabled memory that requires switch-

ing between PIM and non-PIM modes [156, 163] is going to be key to the adoption of

such technologies. The presented work is one of few recent proposals that consider the

challenges involved therein [97, 162].

Finally, Chapter 5 characterizes the performance impact of emerging memory tech-

nologies like Intel Optane and CXL-enabled memory on the performance of a GPU

serving an outsized large language model (LLM) that exceeds the capacity of both

GPU and traditional DRAM-based host memory. Using a real Optane-based machine,

the results highlight the remarkable impact data placement has on LLM inference per-

formance. In response, this dissertation evaluates the performance of two alternative

data placement strategies called HeLM and All-CPU. HeLM optimizes for inference

latency by allocating weights in a layer compute time-aware fashion that improves the

overlap of computation time with weight transfer time. All-CPU, meanwhile, optimizes

for throughput by offloading all model weights to the CPU and utilizing GPU memory

for key/value cache only, allowing for significantly larger batch sizes. Compared to a

baseline compression-only scheme, the latency and throughput of HeLM and All-CPU
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on Intel Optane come within 9% and 6% of an all-DRAM ideal.

6.1 Future Work

The work presented in this dissertation can be expanded upon in many significant and

impactful ways.

Dynamic locality-aware computation placement: RELIEF (Chapter 3) makes

two simplifying assumptions: each computational kernel maps to a unique accelerator

type, and that there is a single instance of each accelerator type. This sidesteps the

issue of deciding which accelerator to place a kernel on. Prior solutions to this problem

are either locality-oblivious [303] or application-specific [63]. RELIEF can potentially

address both limitations since it already maintains metadata for application QoS re-

quirements, accelerator execution times, and location of each accelerator’s input data.

An effective computation placement algorithm will need to consider the queuing delay,

computation time, and data transfer time for each candidate accelerator. The complex-

ity of choosing an accelerator, however, is non-trivial since it will affect the laxity of

each following kernel in the computation DAG.

Distributed accelerator scheduling: As SoCs become more heterogeneous and

incorporate an increasing number of accelerators, a centralized hardware manager will

no longer be scalable. An ideal solution here would be for each accelerator to make

a local scheduling decision that contributes to a globally optimal schedule while mini-

mizing metadata communication between accelerators. A potential middle ground be-

tween purely centralized and distributed scheduling architectures could be a hierarchi-

cal solution that integrates several hardware managers. Each hardware manager would

schedule operations on a subset of accelerators that communicate frequently, similar

to prior work [152], and communicate with other managers only when an application

chain crosses tile boundaries.
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PIM-aware adaptive memory subsystem: The changes to PIM-enabled architec-

tures proposed in this dissertation utilize several constants and fixed limits, like the

fixed partitioning of PIM and non-PIM requests in the interconnect and the length of

each PIM/non-PIM batch at the memory controller. While this improves average per-

formance, it leaves the door open for techniques that can adapt these limits according

to the access pattern of the executing applications. Such a design can help improve

performance in the edge scenarios where the proposed policy is not the best performing

(Figure 4.13).

Parallel PIM and non-PIM servicing: The PIM architectures evaluated in this dis-

sertation switch modes at the granularity of a memory rank, even if all the banks in the

rank cannot perform computation (Section 4.1.1). This resource wastage can be miti-

gated with architectural improvements that allow for the broadcast of PIM commands

to a subset of banks (e.g., even/odd banks, bank groups, etc.) with parallel servicing of

load/store requests in the remaining banks. While such an enhancement could make the

PIM architecture more flexible and improve throughput, it will make the mode switch-

ing decision more granular and add a new dimension to memory controller scheduling

that will need to account for parallel PIM/non-PIM servicing.

Runtime dynamic data placement and movement: Chapter 5 demonstrated the

efficacy of two intelligent LLM data placement schemes, one each optimizing for la-

tency and throughput. An algorithm that can utilize these schemes to traverse the laten-

cy/throughput spectrum based on desired QoS requirements would be the next logical

step here. A key enabler for such an algorithm would be the ability to divide and man-

age smaller chunks of the weights of a single layer (e.g., fully connected), allowing for

finer grained distribution of each layer across the memory hierarchy.
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[99] J. Gómez-Luna, I. E. Hajj, I. Fernandez, C. Giannoula, G. F. Oliveira, and

O. Mutlu. Benchmarking a New Paradigm: Experimental Analysis and Char-

acterization of a Real Processing-in-Memory System. IEEE Access, 10:52565–

52608, 2022. doi: 10.1109/ACCESS.2022.3174101.

[100] R. Hadidi, B. Asgari, B. A. Mudassar, S. Mukhopadhyay, S. Yalamanchili, and

H. Kim. Demystifying the characteristics of 3D-stacked memories: A case study

for Hybrid Memory Cube. In 2017 IEEE International Symposium on Work-

load Characterization (IISWC), pages 66–75, 2017. doi: 10.1109/IISWC.2017.

8167757.

[101] H. Ham, J. Hong, G. Park, Y. Shin, O. Woo, W. Yang, J. Bae, E. Park, H. Sung,

E. Lim, and G. Kim. Low-Overhead General-Purpose Near-Data Processing in

CXL Memory Expanders. In 2024 57th IEEE/ACM International Symposium on

https://www.usenix.org/conference/usenixatc11/pegasus-coordinated-scheduling-virtualized-accelerator-based-systems
https://www.usenix.org/conference/usenixatc11/pegasus-coordinated-scheduling-virtualized-accelerator-based-systems
https://www.usenix.org/conference/usenixatc11/pegasus-coordinated-scheduling-virtualized-accelerator-based-systems
https://www.usenix.org/conference/usenixatc11/pegasus-coordinated-scheduling-virtualized-accelerator-based-systems


157

Microarchitecture (MICRO), pages 594–611, 2024. doi: 10.1109/MICRO61859.

2024.00051.

[102] R. Hameed, W. Qadeer, M. Wachs, O. Azizi, A. Solomatnikov, B. C. Lee,

S. Richardson, C. Kozyrakis, and M. Horowitz. Understanding sources of ineffi-

ciency in general-purpose chips. In Proceedings of the 37th Annual International

Symposium on Computer Architecture, ISCA ’10, pages 37–47, New York, NY,

USA, 2010. Association for Computing Machinery. ISBN 978-1-4503-0053-

7. doi: 10.1145/1815961.1815968. URL https://doi.org/10.1145/

1815961.1815968. event-place: Saint-Malo, France.

[103] S. Han, J. Pool, J. Tran, and W. J. Dally. Learning both weights and connections

for efficient neural networks. In Proceedings of the 29th International Con-

ference on Neural Information Processing Systems - Volume 1, NIPS’15, pages

1135–1143, Cambridge, MA, USA, 2015. MIT Press. event-place: Montreal,

Canada.

[104] R. Hankins, G. Chinya, J. Collins, P. Wang, R. Rakvic, H. Wang, and J. Shen.

Multiple Instruction Stream Processor. In 33rd International Symposium on

Computer Architecture (ISCA’06), pages 114–127, 2006. doi: 10.1109/ISCA.

2006.29.

[105] C. Harris and M. Stephens. A combined corner and edge detector. In In Proc. of

Fourth Alvey Vision Conference, pages 147–151, 1988.

[106] M. Harris. GPU Pro Tip: CUDA 7 Streams Simplify Concurrency,

Jan. 2015. URL https://developer.nvidia.com/blog/gpu-pro-

tip-cuda-7-streams-simplify-concurrency/.

[107] M. Harris. Unified Memory for CUDA Beginners, June 2017. URL

https://developer.nvidia.com/blog/unified-memory-

cuda-beginners/.

https://doi.org/10.1145/1815961.1815968
https://doi.org/10.1145/1815961.1815968
https://developer.nvidia.com/blog/gpu-pro-tip-cuda-7-streams-simplify-concurrency/
https://developer.nvidia.com/blog/gpu-pro-tip-cuda-7-streams-simplify-concurrency/
https://developer.nvidia.com/blog/unified-memory-cuda-beginners/
https://developer.nvidia.com/blog/unified-memory-cuda-beginners/


158

[108] M. He, C. Song, I. Kim, C. Jeong, S. Kim, I. Park, M. Thottethodi, and T. N.

Vijaykumar. Newton: A DRAM-maker’s Accelerator-in-Memory (AiM) Ar-

chitecture for Machine Learning. In 2020 53rd Annual IEEE/ACM Interna-

tional Symposium on Microarchitecture (MICRO), pages 372–385, 2020. doi:

10.1109/MICRO50266.2020.00040.

[109] J. Hegarty, J. Brunhaver, Z. DeVito, J. Ragan-Kelley, N. Cohen, S. Bell, A. Vasi-

lyev, M. Horowitz, and P. Hanrahan. Darkroom: compiling high-level image

processing code into hardware pipelines. ACM Transactions on Graphics, 33(4):

1–11, July 2014. ISSN 0730-0301, 1557-7368. doi: 10.1145/2601097.2601174.

URL https://dl.acm.org/doi/10.1145/2601097.2601174.

[110] J. L. Hennessy and D. A. Patterson. Computer Architecture, Fifth Edition: A

Quantitative Approach. Morgan Kaufmann Publishers Inc., San Francisco, CA,

USA, 5th edition, 2011. ISBN 0-12-383872-X.

[111] G. Heo, S. Lee, J. Cho, H. Choi, S. Lee, H. Ham, G. Kim, D. Mahajan, and

J. Park. NeuPIMs: NPU-PIM Heterogeneous Acceleration for Batched LLM In-

ferencing. In Proceedings of the 29th ACM International Conference on Archi-

tectural Support for Programming Languages and Operating Systems, Volume

3, ASPLOS ’24, pages 722–737, New York, NY, USA, 2024. Association for

Computing Machinery. ISBN 9798400703867. doi: 10.1145/3620666.3651380.

URL https://doi.org/10.1145/3620666.3651380. event-place:

La Jolla, CA, USA.

[112] M. Hildebrand, J. Khan, S. Trika, J. Lowe-Power, and V. Akella. AutoTM:

Automatic Tensor Movement in Heterogeneous Memory Systems Using Integer

Linear Programming. In Proceedings of the Twenty-Fifth International Con-

ference on Architectural Support for Programming Languages and Operating

Systems, pages 875–890. Association for Computing Machinery, New York,

https://dl.acm.org/doi/10.1145/2601097.2601174
https://doi.org/10.1145/3620666.3651380


159

NY, USA, 2020. ISBN 978-1-4503-7102-5. URL https://doi.org/10.

1145/3373376.3378465.

[113] A. Ho, T. Besiroglu, E. Erdil, D. Owen, R. Rahman, Z. C. Guo, D. Atkinson,

N. Thompson, and J. Sevilla. Algorithmic progress in language models, 2024.

URL https://arxiv.org/abs/2403.05812. arXiv: 2403.05812.

[114] S. Hochreiter and J. Schmidhuber. Long Short-Term Memory. Neural Compu-

tation, 9(8):1735–1780, Nov. 1997. ISSN 0899-7667. doi: 10.1162/neco.1997.

9.8.1735. URL https://doi.org/10.1162/neco.1997.9.8.1735.

[115] J. Hong, S. Cho, G. Park, W. Yang, Y.-H. Gong, and G. Kim. Bandwidth-

Effective DRAM Cache for GPU s with Storage-Class Memory. In 2024 IEEE

International Symposium on High-Performance Computer Architecture (HPCA),

pages 139–155, 2024. doi: 10.1109/HPCA57654.2024.00021.

[116] K. S. Hong and J. Y. Leung. On-line scheduling of real-time tasks. IEEE Trans-

actions on Computers, 41(10):1326–1331, 1992. doi: 10.1109/12.166609.

[117] C. Hooper, S. Kim, H. Mohammadzadeh, M. W. Mahoney, Y. S. Shao,

K. Keutzer, and A. Gholami. KVQuant: Towards 10 Million Context Length

LLM Inference with KV Cache Quantization, 2024. URL https://arxiv.

org/abs/2401.18079. arXiv: 2401.18079.

[118] I. Hubara, M. Courbariaux, D. Soudry, R. El-Yaniv, and Y. Bengio. Quantized

neural networks: training neural networks with low precision weights and acti-

vations. J. Mach. Learn. Res., 18(1):6869–6898, Jan. 2017. ISSN 1532-4435.

Publisher: JMLR.org.

[119] M. A. Ibrahim and S. Aga. Pimacolaba: Collaborative Acceleration for FFT on

Commercial Processing-In-Memory Architectures. In Proceedings of the 2024

International Symposium on Memory Systems, MEMSYS ’24, New York, NY,

https://doi.org/10.1145/3373376.3378465
https://doi.org/10.1145/3373376.3378465
https://arxiv.org/abs/2403.05812
https://doi.org/10.1162/neco.1997.9.8.1735
https://arxiv.org/abs/2401.18079
https://arxiv.org/abs/2401.18079


160

USA, 2024. Association for Computing Machinery. event-place: Washington

DC, DC, USA.

[120] M. Imani, Y. Kim, and T. Rosing. MPIM: Multi-purpose in-memory process-

ing using configurable resistive memory. In 2017 22nd Asia and South Pa-

cific Design Automation Conference (ASP-DAC), pages 757–763, 2017. doi:

10.1109/ASPDAC.2017.7858415.

[121] Intel. Intel Optane DC Persistent Memory Product Brief, 2019. URL

https://www.intel.com/content/dam/www/public/us/

en/documents/product-briefs/optane-dc-persistent-

memory-brief.pdf.

[122] Intel. DDR4/DDR-T DIMM Memory Interface, June 2020. URL https:

//www.intel.com/content/www/us/en/docs/programmable/

683867/current/ddr4-ddr-t-dimm-memory-interface.html.

[123] Intel. Intel Data Streaming Accelerator Architecture Specification,

Sept. 2022. URL https://cdrdv2-public.intel.com/671116/

341204-intel-data-streaming-accelerator-spec.pdf.

[124] Intel. Intel Reports Second-Quarter 2022 Financial Results, July

2022. URL https://www.intc.com/news-events/press-

releases/detail/1563/intel-reports-second-quarter-

2022-financial-results.

[125] Intel. Migration from Direct-Attached Intel Optane Persistent Memory to

CXL-Attached Memory, Nov. 2022. URL https://www.intel.com/

content/dam/www/central-libraries/us/en/documents/

2022-11/optane-pmem-to-cxl-tech-brief.pdf.

[126] Intel. Accelerate Artificial Intelligence Workloads with Intel Advanced Ma-

trix Extensions, June 2024. URL https://cdrdv2.intel.com/v1/

https://www.intel.com/content/dam/www/public/us/en/documents/product-briefs/optane-dc-persistent-memory-brief.pdf
https://www.intel.com/content/dam/www/public/us/en/documents/product-briefs/optane-dc-persistent-memory-brief.pdf
https://www.intel.com/content/dam/www/public/us/en/documents/product-briefs/optane-dc-persistent-memory-brief.pdf
https://www.intel.com/content/www/us/en/docs/programmable/683867/current/ddr4-ddr-t-dimm-memory-interface.html
https://www.intel.com/content/www/us/en/docs/programmable/683867/current/ddr4-ddr-t-dimm-memory-interface.html
https://www.intel.com/content/www/us/en/docs/programmable/683867/current/ddr4-ddr-t-dimm-memory-interface.html
https://cdrdv2-public.intel.com/671116/341204-intel-data-streaming-accelerator-spec.pdf
https://cdrdv2-public.intel.com/671116/341204-intel-data-streaming-accelerator-spec.pdf
https://www.intc.com/news-events/press-releases/detail/1563/intel-reports-second-quarter-2022-financial-results
https://www.intc.com/news-events/press-releases/detail/1563/intel-reports-second-quarter-2022-financial-results
https://www.intc.com/news-events/press-releases/detail/1563/intel-reports-second-quarter-2022-financial-results
https://www.intel.com/content/dam/www/central-libraries/us/en/documents/2022-11/optane-pmem-to-cxl-tech-brief.pdf
https://www.intel.com/content/dam/www/central-libraries/us/en/documents/2022-11/optane-pmem-to-cxl-tech-brief.pdf
https://www.intel.com/content/dam/www/central-libraries/us/en/documents/2022-11/optane-pmem-to-cxl-tech-brief.pdf
https://cdrdv2.intel.com/v1/dl/getContent/785250?fileName=Intel+AMX+Technology+Brief.pdf


161

dl/getContent/785250?fileName=Intel+AMX+Technology+

Brief.pdf.

[127] Intel. Intel 64 and IA-32 Architectures Software Developer’s Manual, Mar. 2025.

[128] I. R. Ivanov, O. Zinenko, J. Domke, T. Endo, and W. S. Moses. Re-

targeting and Respecializing GPU Workloads for Performance Portabil-

ity. In 2024 IEEE/ACM International Symposium on Code Genera-

tion and Optimization (CGO), pages 119–132, Los Alamitos, CA, USA,

Mar. 2024. IEEE Computer Society. doi: 10.1109/CGO57630.2024.

10444828. URL https://doi.ieeecomputersociety.org/10.

1109/CGO57630.2024.10444828.

[129] J. Izraelevitz, J. Yang, L. Zhang, J. Kim, X. Liu, A. Memaripour, Y. J.

Soh, Z. Wang, Y. Xu, S. R. Dulloor, J. Zhao, and S. Swanson. Basic Per-

formance Measurements of the Intel Optane DC Persistent Memory Mod-

ule. arXiv:1903.05714 [cs], Aug. 2019. URL http://arxiv.org/abs/

1903.05714. arXiv: 1903.05714.

[130] J. Jeddeloh and B. Keeth. Hybrid memory cube new DRAM architecture in-

creases density and performance. In 2012 Symposium on VLSI Technology (VL-

SIT), pages 87–88, 2012. doi: 10.1109/VLSIT.2012.6242474.

[131] JEDEC. High Bandwidth Memory (HBM) DRAM (JESD235D), Mar. 2021.

[132] JEDEC. Graphics Double Data Rate (GDDR6) SGRAM Standard (JESD250D),

May 2023.

[133] D. Jeong, J. Park, and J. Kim. Demand MemCpy: Overlapping of Computa-

tion and Data Transfer for Heterogeneous Computing. IEEE Access, 10:79925–

79938, 2022. doi: 10.1109/ACCESS.2022.3195271.

https://cdrdv2.intel.com/v1/dl/getContent/785250?fileName=Intel+AMX+Technology+Brief.pdf
https://cdrdv2.intel.com/v1/dl/getContent/785250?fileName=Intel+AMX+Technology+Brief.pdf
https://cdrdv2.intel.com/v1/dl/getContent/785250?fileName=Intel+AMX+Technology+Brief.pdf
https://doi.ieeecomputersociety.org/10.1109/CGO57630.2024.10444828
https://doi.ieeecomputersociety.org/10.1109/CGO57630.2024.10444828
http://arxiv.org/abs/1903.05714
http://arxiv.org/abs/1903.05714


162

[134] Y. Jin, C.-F. Wu, D. Brooks, and G.-Y. Wei. Sˆ3: Increasing GPU Uti-

lization during Generative Inference for Higher Throughput. In A. Oh,

T. Naumann, A. Globerson, K. Saenko, M. Hardt, and S. Levine,

editors, Advances in Neural Information Processing Systems, vol-

ume 36, pages 18015–18027. Curran Associates, Inc., 2023. URL

https://proceedings.neurips.cc/paper_files/paper/

2023/file/3a13be0c5dae69e0f08065f113fb10b8-Paper-

Conference.pdf.

[135] Z. Jin. The Rodinia Benchmark Suite in SYCL. June 2020. doi: 10.2172/

1631460. URL https://www.osti.gov/biblio/1631460.

[136] Z. Jin and J. S. Vetter. Evaluating Unified Memory Performance in HIP. In 2022

IEEE International Parallel and Distributed Processing Symposium Workshops

(IPDPSW), pages 562–568, 2022. doi: 10.1109/IPDPSW55747.2022.00096.

[137] A. Jog, E. Bolotin, Z. Guz, M. Parker, S. W. Keckler, M. T. Kandemir, and

C. R. Das. Application-aware Memory System for Fair and Efficient Execu-

tion of Concurrent GPGPU Applications. In Proceedings of Workshop on Gen-

eral Purpose Processing Using GPUs, GPGPU-7, pages 1–8, New York, NY,

USA, 2014. Association for Computing Machinery. ISBN 978-1-4503-2766-

4. doi: 10.1145/2588768.2576780. URL https://doi.org/10.1145/

2588768.2576780. event-place: Salt Lake City, UT, USA.

[138] A. Jog, O. Kayiran, T. Kesten, A. Pattnaik, E. Bolotin, N. Chatterjee, S. W.

Keckler, M. T. Kandemir, and C. R. Das. Anatomy of GPU Memory System

for Multi-Application Execution. In Proceedings of the 2015 International Sym-

posium on Memory Systems, MEMSYS ’15, pages 223–234, New York, NY,

USA, 2015. Association for Computing Machinery. ISBN 978-1-4503-3604-

8. doi: 10.1145/2818950.2818979. URL https://doi.org/10.1145/

2818950.2818979. event-place: Washington DC, DC, USA.

https://proceedings.neurips.cc/paper_files/paper/2023/file/3a13be0c5dae69e0f08065f113fb10b8-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2023/file/3a13be0c5dae69e0f08065f113fb10b8-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2023/file/3a13be0c5dae69e0f08065f113fb10b8-Paper-Conference.pdf
https://www.osti.gov/biblio/1631460
https://doi.org/10.1145/2588768.2576780
https://doi.org/10.1145/2588768.2576780
https://doi.org/10.1145/2818950.2818979
https://doi.org/10.1145/2818950.2818979


163

[139] H. Jun, J. Cho, K. Lee, H.-Y. Son, K. Kim, H. Jin, and K. Kim. HBM (High

Bandwidth Memory) DRAM Technology and Architecture. In 2017 IEEE Inter-

national Memory Workshop (IMW), pages 1–4, 2017. doi: 10.1109/IMW.2017.

7939084.

[140] M. Jung. Hello bytes, bye blocks: PCIe storage meets compute express link

for memory expansion (CXL-SSD). In Proceedings of the 14th ACM Workshop

on Hot Topics in Storage and File Systems, HotStorage ’22, pages 45–51, New

York, NY, USA, 2022. Association for Computing Machinery. ISBN 978-1-

4503-9399-7. doi: 10.1145/3538643.3539745. URL https://doi.org/

10.1145/3538643.3539745. event-place: Virtual Event.

[141] M. Kagan, S. Gochman, D. Orenstein, and D. Lin. MMX Microarchitecture of

Pentium Processors With MMX Technology and Pentium II Microprocessors.

Intel Technology Journal, 1997.

[142] A. K. Kamath, R. Prabhu, J. Mohan, S. Peter, R. Ramjee, and A. Panwar. POD-

Attention: Unlocking Full Prefill-Decode Overlap for Faster LLM Inference. In

Proceedings of the 30th ACM International Conference on Architectural Sup-

port for Programming Languages and Operating Systems, Volume 2, ASPLOS

’25, pages 897–912, New York, NY, USA, 2025. Association for Computing

Machinery. ISBN 9798400710797. doi: 10.1145/3676641.3715996. URL

https://doi.org/10.1145/3676641.3715996. event-place: Rotter-

dam, Netherlands.

[143] S. Karim, J. Wünsche, M. Kuhn, G. Saake, and D. Broneske. NVM in Data Stor-

age: A Post-Optane Future. ACM Trans. Storage, Apr. 2025. ISSN 1553-3077.

doi: 10.1145/3731454. URL https://doi.org/10.1145/3731454.

Place: New York, NY, USA Publisher: Association for Computing Machinery.

[144] M. Khairy, Z. Shen, T. M. Aamodt, and T. G. Rogers. Accel-Sim: An Extensible

https://doi.org/10.1145/3538643.3539745
https://doi.org/10.1145/3538643.3539745
https://doi.org/10.1145/3676641.3715996
https://doi.org/10.1145/3731454


164

Simulation Framework for Validated GPU Modeling. In 2020 ACM/IEEE 47th

Annual International Symposium on Computer Architecture (ISCA), pages 473–

486, 2020. doi: 10.1109/ISCA45697.2020.00047.

[145] C. H. Kim, W. J. Lee, Y. Paik, K. Kwon, S. Y. Kim, I. Park, and S. W.

Kim. Silent-PIM: Realizing the Processing-in-Memory Computing With Stan-

dard Memory Requests. IEEE Transactions on Parallel and Distributed Systems,

33(2):251–262, 2022. doi: 10.1109/TPDS.2021.3065365.

[146] J. S. Kim, D. Senol Cali, H. Xin, D. Lee, S. Ghose, M. Alser, H. Hassan, O. Er-

gin, C. Alkan, and O. Mutlu. GRIM-Filter: Fast seed location filtering in DNA

read mapping using processing-in-memory technologies. BMC Genomics, 19

(2):89, May 2018. ISSN 1471-2164. doi: 10.1186/s12864-018-4460-0. URL

https://doi.org/10.1186/s12864-018-4460-0.

[147] Y. Kim, D. Han, O. Mutlu, and M. Harchol-Balter. ATLAS: A scalable and high-

performance scheduling algorithm for multiple memory controllers. In HPCA

- 16 2010 The Sixteenth International Symposium on High-Performance Com-

puter Architecture, pages 1–12, 2010. doi: 10.1109/HPCA.2010.5416658.

[148] Y. Kim, M. Papamichael, O. Mutlu, and M. Harchol-Balter. Thread Cluster

Memory Scheduling: Exploiting Differences in Memory Access Behavior. In

2010 43rd Annual IEEE/ACM International Symposium on Microarchitecture,

pages 65–76, 2010. doi: 10.1109/MICRO.2010.51.

[149] Y.-B. Kim and T. Chen. Assessing merged DRAM/logic technology. In 1996

IEEE International Symposium on Circuits and Systems (ISCAS), volume 4,

pages 133–136 vol.4, 1996. doi: 10.1109/ISCAS.1996.541917.

[150] A. Krishna, T. Heil, N. Lindberg, F. Toussi, and S. VanderWiel. Hard-

ware Acceleration in the IBM PowerEN Processor: Architecture and Perfor-

mance. In Proceedings of the 21st International Conference on Parallel Archi-

https://doi.org/10.1186/s12864-018-4460-0


165

tectures and Compilation Techniques, PACT ’12, pages 389–400, New York, NY,

USA, 2012. Association for Computing Machinery. ISBN 978-1-4503-1182-

3. doi: 10.1145/2370816.2370872. URL https://doi.org/10.1145/

2370816.2370872. event-place: Minneapolis, Minnesota, USA.

[151] S. Kumar. Fundamental Limits to Moore’s Law, 2015. URL https://

arxiv.org/abs/1511.05956. arXiv: 1511.05956.

[152] S. Kumar, A. Shriraman, and N. Vedula. Fusion: Design Tradeoffs in Co-

herent Cache Hierarchies for Accelerators. In Proceedings of the 42nd An-

nual International Symposium on Computer Architecture, ISCA ’15, pages 733–

745, Portland, Oregon, USA, 2015. Association for Computing Machinery.

ISBN 978-1-4503-3402-0. doi: 10.1145/2749469.2750421. URL https:

//doi.org/10.1145/2749469.2750421.

[153] S. Kvatinsky, D. Belousov, S. Liman, G. Satat, N. Wald, E. G. Friedman,

A. Kolodny, and U. C. Weiser. MAGIC—Memristor-Aided Logic. IEEE Trans-

actions on Circuits and Systems II: Express Briefs, 61(11):895–899, 2014. doi:

10.1109/TCSII.2014.2357292.

[154] W. Kwon, Z. Li, S. Zhuang, Y. Sheng, L. Zheng, C. H. Yu, J. Gonzalez,

H. Zhang, and I. Stoica. Efficient Memory Management for Large Language

Model Serving with PagedAttention. In Proceedings of the 29th Symposium on

Operating Systems Principles, SOSP ’23, pages 611–626, New York, NY, USA,

2023. Association for Computing Machinery. ISBN 9798400702297. doi: 10.

1145/3600006.3613165. URL https://doi.org/10.1145/3600006.

3613165. event-place: Koblenz, Germany.

[155] Y. Kwon, K. Vladimir, N. Kim, W. Shin, J. Won, M. Lee, H. Joo, H. Choi,

G. Kim, B. An, J. Kim, J. Lee, I. Kim, J. Park, C. Park, Y. Song, B. Yang,

H. Lee, S. Kim, D. Kwon, S. Lee, K. Kim, S. Oh, J. Park, G. Hong, D. Ka,

https://doi.org/10.1145/2370816.2370872
https://doi.org/10.1145/2370816.2370872
https://arxiv.org/abs/1511.05956
https://arxiv.org/abs/1511.05956
https://doi.org/10.1145/2749469.2750421
https://doi.org/10.1145/2749469.2750421
https://doi.org/10.1145/3600006.3613165
https://doi.org/10.1145/3600006.3613165


166

K. Hwang, J. Park, K. Kang, J. Kim, J. Jeon, M. Lee, M. Shin, M. Shin, J. Cha,

C. Jung, K. Chang, C. Jeong, E. Lim, I. Park, J. Chun, and S. Hynix. System

Architecture and Software Stack for GDDR6-AiM. In 2022 IEEE Hot Chips 34

Symposium (HCS), pages 1–25, 2022. doi: 10.1109/HCS55958.2022.9895629.

[156] Y.-C. Kwon, S. H. Lee, J. Lee, S.-H. Kwon, J. M. Ryu, J.-P. Son, O. Seongil,

H.-S. Yu, H. Lee, S. Y. Kim, Y. Cho, J. G. Kim, J. Choi, H.-S. Shin, J. Kim,

B. Phuah, H. Kim, M. J. Song, A. Choi, D. Kim, S. Kim, E.-B. Kim, D. Wang,

S. Kang, Y. Ro, S. Seo, J. Song, J. Youn, K. Sohn, and N. S. Kim. 25.4 A 20nm

6GB Function-In-Memory DRAM, Based on HBM2 with a 1.2TFLOPS Pro-

grammable Computing Unit Using Bank-Level Parallelism, for Machine Learn-

ing Applications. In 2021 IEEE International Solid- State Circuits Conference

(ISSCC), volume 64, pages 350–352, 2021. doi: 10.1109/ISSCC42613.2021.

9365862.

[157] G. Kyriazis. Heterogeneous System Architecture: A Technical Review. Techni-

cal report, AMD, Aug. 2012.
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A Chapter 3 Artifact Appendix

A.1 Abstract

This artifact appendix describes how to run RELIEF and other accelerator scheduling

policies described in Chapter 3 using gem5. The artifact includes the implementation of

all the policies in gem5 and our vision and RNN benchmark suite, along with pre-built

binaries for the latter. It also includes optional instructions to rebuild the benchmark

binaries and hardware models.

A.2 Artifact check-list (meta-information)

• Algorithm: RELIEF, a least-laxity based scheduling policy.

• Program: gem5 (C++ and Python code).

• Compilation: GCC, SCons.

• Binary: Vision and RNN binaries, compiled using GNU Arm Embedded toolchain v8.3.

• Run-time environment: Any modern Linux distribution.

• Hardware: x86-based CPU with 10 cores and 32GB main memory.
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• Metrics: Data forwards, data movement, accelerator occupancy, slowdown, node dead-

lines met, DAG deadlines met.

• Output: gem5 statistics and execution trace.

• How much disk space required (approximately)?: 17 GB.

• How much time is needed to prepare workflow (approximately)?: 2-3 hours.

• How much time is needed to complete experiments (approximately)?: 8-10 hours.

• Publicly available?: Yes

• Code licenses (if publicly available)?: BSD-3

• Archived (provide DOI)?: https://doi.org/10.5281/zenodo.10237117

A.3 Description

A.3.1 How to access

The code is available on GitHub1 and Zenodo2.

A.3.2 Hardware dependencies

Recent x86 based CPU with at least 10 cores and 32GB main memory. The simulations

take multiple hours to run, and we recommend at least 60 cores and 150 GB of main

memory to run all of them in parallel.

A.3.3 Software dependencies

• Linux OS with a recent version of GCC.

1https://github.com/Sacusa/gem5-SALAM/tree/HPCA_2024
2https://doi.org/10.5281/zenodo.10237117

https://doi.org/10.5281/zenodo.10237117
https://github.com/Sacusa/gem5-SALAM/tree/HPCA_2024
https://doi.org/10.5281/zenodo.10237117
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• Python 2 with pip installed.

• (Optional) GNU Arm Embedded toolchain v8.3

• (Optional) LLVM 3.8

A.4 Installation

The steps below detail the installation for gem5 and associated Python dependen-

cies. There is a step for building the benchmarks that requires GNU Arm Embedded

toolchain v8.3. Our distribution already includes benchmark binaries, so this step is

optional.

1. Navigate to the project root directory and install Python dependencies by running:

pip install -r requirements.txt

2. Build gem5 by following the instructions in README.md.

3. Set M5 PATH environment variable:

export M5 PATH=`pwd`

4. (Optional) Build the benchmarks by navigating to

$M5 PATH/benchmarks/scheduler/sw and running the following com-

mand. Note that this requires the installation of GNU Arm Embedded toolchain,

described in README.md.

./create binary combinations 3.sh

The binaries will be put in the directory bin comb 3.

5. (Optional) Compile the accelerator descriptions into LLVM IR by navigating to

$M5 PATH/benchmarks/scheduler/hw

and running make. Note that this requires the installation of LLVM 3.8, de-

scribed in README.md.
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A.5 Experiment workflow

Navigate to the project root directory and launch high contention scenario simulations

by running:

./run combinations 3.sh `nproc`

The simulations need at least 10 cores to finish in a reasonable period. The results will

be saved in the directory

$M5 PATH/BM ARM OUT/comb 3.

A.6 Evaluation and expected results

The directory $M5 PATH/BM ARM OUT/scripts/comb 3 contains plotting scripts

to visualize key results from Chapter 3. Once the simulations finish, the following

figures can be regenerated using the respective scripts in the directory:

• Figure 3.4c: plot forwards.py

• Figure 3.5c: plot data movement.py

• Figure 3.7c: plot accelerator occupancy.py

• Figure 3.9a: plot slowdown.py

• Figures 3.8c, 3.9b: plot deadlines met.py

Each script can be run as:

python <script>

The scripts use matplotlib to produce the figures in PDF format, which are stored in

$M5 PATH/BM ARM OUT/scripts/plots.
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B Chapter 4 Artifact Appendix

B.1 Abstract

This artifact appendix describes how to reproduce key results from Chapter 4. The ar-

tifact includes a modified version of the GPGPU-Sim 4.0.1 simulator, the PIM bench-

mark suite, and the Rodinia benchmark suite with input data. The modified GPGPU-

Sim implements the baseline and proposed interconnect architecture and memory con-

troller scheduling policies, along with modifications to some CUDA APIs to provide

more control over concurrent kernel launches. The artifact can be set up easily using

the provided Dockerfile.

B.2 Artifact check-list (meta-information)

• Algorithm: F3FS, a memory controller scheduling policy.

• Program: GPGPU-Sim, Rodinia benchmark suite, PIM benchmarks.

• Data set: Modified Rodinia benchmark suite inputs.

• Hardware: Dual core x86-64 based CPU and 8GB memory.
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• Metrics: Fairness index, system throughput, number of mode switches, conflicts per

switch, drain latency per switch, LLM speedup.

• Output: GPGPU-Sim output statistics and plots generated using matplotlib.

• How much disk space required (approximately)?: 20 GB.

• How much time is needed to prepare workflow (approximately)?: 15 minutes.

• How much time is needed to complete experiments (approximately)?: 2 weeks.

• Publicly available?: Yes.

• Code licenses (if publicly available)?: Creative Commons 4.0

• Data licenses (if publicly available)?: Creative Commons 4.0

• Workflow automation framework used?: Docker.

• Archived (provide DOI)?: https://doi.org/10.5281/zenodo.15164086

B.3 Description

B.3.1 How to access

The artifact is available on both GitHub and Zenodo at the following links. We recom-

mend using the Dockerfile to set up the artifact.

• Zenodo: https://zenodo.org/records/15164086

• GitHub:

– Dockerfile: https://gist.github.com/Sacusa/

47801d133eda38317bc8fc84013ed041

– Simulator: https://github.com/Sacusa/GPGPU-Sim-4.0.1/

tree/ISPASS_2025

https://doi.org/10.5281/zenodo.15164086
https://zenodo.org/records/15164086
https://gist.github.com/Sacusa/47801d133eda38317bc8fc84013ed041
https://gist.github.com/Sacusa/47801d133eda38317bc8fc84013ed041
https://github.com/Sacusa/GPGPU-Sim-4.0.1/tree/ISPASS_2025
https://github.com/Sacusa/GPGPU-Sim-4.0.1/tree/ISPASS_2025
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– Benchmarks: https://github.com/Sacusa/PIM_apps/tree/

ISPASS_2025

B.3.2 Hardware dependencies

Recent x86-64 based CPU with at least 2 cores and 8GB memory. There are a total of

3258 simulations, so more cores and memory would help.

B.3.3 Software dependencies

This artifact only requires Docker to run.

B.3.4 Data sets

Input data is generated using scripts that come with the Rodinia benchmark suite.

B.4 Installation

The steps below detail how to build a Docker image and start a container for the artifact.

This assumes that the user already has Docker installed.

1. Download the Dockerfile from either GitHub or Zenodo.

2. Navigate to the downloaded file from a terminal and execute the following :

docker build -t ispass2025:latest .

3. Once the build is complete, start a container by running the following command:

docker run -i -t --name <name> ispass2025:latest

Replace <name> with a name for the container. This command will create a new

container and attach to its terminal.

https://github.com/Sacusa/PIM_apps/tree/ISPASS_2025
https://github.com/Sacusa/PIM_apps/tree/ISPASS_2025
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4. To start the container again in the future, run:

docker start <name>

And connect to it by running:

docker attach <name>

B.5 Experiment workflow

Navigate to:

/opt/PIM apps/STREAM

and launch the script:

run baseline.sh 8

to run the baseline PIM experiments. This will simulate PIM kernels running alone.

Next, navigate to:

/opt/PIM apps/rodinia 3.1 pim/cuda

and run the script:

launch ispass2025.sh

to run the baseline Rodinia and LLM experiments, followed by the competitive and

collaborative experiments. While the results presented in the chapter require a total of

3258 simulations, the script can be modified to run a subset of experiments for faster

reproduction of results.

B.6 Evaluation and expected results

The directory:

/opt/PIM apps/rodinia 3.1 pim/cuda/scripts
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contains plotting scripts to visualize key results from Chapter 4. Once the simulations

finish, the following figures can be regenerated using the respective scripts in the direc-

tory:

• Figure 4.7: plot mem arrival rate.py

• Figure 4.9a: plot fairness index.py

• Figure 4.9b: plot throughput.py

• Figure 4.10a: plot num switches.py

• Figures 4.10b, 4.10c: plot switch overheads.py

• Figure 4.11: plot llm speedup.py
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C Chapter 5 Artifact Appendix

C.1 Abstract

This artifact appendix describes how to reproduce key results from Chapter 5. The ar-

tifact includes a modified version of FlexGen that implements the two proposed weight

allocation schemes, along with the author collected data and helper scripts to plot the

figures described in the chapter.

C.2 Artifact check-list (meta-information)

• Algorithm: HeLM and All-CPU.

• Program: FlexGen.

• Model: OPT-30B and OPT-175B.

• Data set: c4/realnewslike.

• Hardware: Modern x86-64 based CPU with at least 100 GB DRAM+Optane memory

and a CUDA-compatible GPU with at least 4 GB memory.

• Metrics: Time to first token (TTFT), time between tokens (TBT), throughput (token-

s/second), compute/communication latency overlap
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• How much disk space required (approximately)?: 450 GB.

• How much time is needed to prepare workflow (approximately)?: 2-4 hours.

• How much time is needed to complete experiments (approximately)?: 4 days.

• Publicly available?: Yes.

• Code licenses (if publicly available)?: Apache-2.0.

• Data licenses (if publicly available)?: OPT-175B license (model) and Apache-2.0 (data

set).

• Archived (provide DOI)?: https://doi.org/10.5281/zenodo.16905746.

C.2.1 How to access

The artifact is available on both GitHub and Zenodo at the following links..

• Zenodo: https://zenodo.org/records/16905746

• GitHub: https://github.com/Sacusa/FlexLLMGen

C.2.2 Hardware dependencies

Recent x86-64 based CPU with at least 100 GB of heterogeneous memory. Our system,

for instance, combines DRAM and Intel Optane. A CUDA-compatible GPU with at

least 4 GB of onboard memory.

C.2.3 Software dependencies

PyTorch >= 1.12.

https://doi.org/10.5281/zenodo.16905746
https://zenodo.org/records/16905746
https://github.com/Sacusa/FlexLLMGen
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C.2.4 Data sets

c4/realnewslike: https://huggingface.co/datasets/allenai/c4.

C.2.5 Models

FlexGen automatically downloads most model weights. The weights for OPT-

175B can be obtained at https://huggingface.co/Neko-Institute-of-

Science/OPT-175B-NumPy

C.3 Installation

1. Download the input data set and models from the links above using HuggingFace

CLI.

2. Follow the instructions in README.md to set up FlexGen.

C.4 Evaluation and expected results

The raw data used for the figures in Chapter 5 can be found in output/ directory. The

scripts in output/scripts can be used the generate the figures in PDF format.

https://huggingface.co/datasets/allenai/c4
https://huggingface.co/Neko-Institute-of-Science/OPT-175B-NumPy
https://huggingface.co/Neko-Institute-of-Science/OPT-175B-NumPy
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